]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sparc64/mm/init.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6-omap-h63xx.git] / arch / sparc64 / mm / init.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/irq.h>
52
53 #include "init.h"
54
55 unsigned long kern_linear_pte_xor[2] __read_mostly;
56
57 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
58  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
59  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
60  */
61 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
62
63 #ifndef CONFIG_DEBUG_PAGEALLOC
64 /* A special kernel TSB for 4MB and 256MB linear mappings.
65  * Space is allocated for this right after the trap table
66  * in arch/sparc64/kernel/head.S
67  */
68 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
69 #endif
70
71 #define MAX_BANKS       32
72
73 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
74 static int pavail_ents __initdata;
75
76 static int cmp_p64(const void *a, const void *b)
77 {
78         const struct linux_prom64_registers *x = a, *y = b;
79
80         if (x->phys_addr > y->phys_addr)
81                 return 1;
82         if (x->phys_addr < y->phys_addr)
83                 return -1;
84         return 0;
85 }
86
87 static void __init read_obp_memory(const char *property,
88                                    struct linux_prom64_registers *regs,
89                                    int *num_ents)
90 {
91         int node = prom_finddevice("/memory");
92         int prop_size = prom_getproplen(node, property);
93         int ents, ret, i;
94
95         ents = prop_size / sizeof(struct linux_prom64_registers);
96         if (ents > MAX_BANKS) {
97                 prom_printf("The machine has more %s property entries than "
98                             "this kernel can support (%d).\n",
99                             property, MAX_BANKS);
100                 prom_halt();
101         }
102
103         ret = prom_getproperty(node, property, (char *) regs, prop_size);
104         if (ret == -1) {
105                 prom_printf("Couldn't get %s property from /memory.\n");
106                 prom_halt();
107         }
108
109         /* Sanitize what we got from the firmware, by page aligning
110          * everything.
111          */
112         for (i = 0; i < ents; i++) {
113                 unsigned long base, size;
114
115                 base = regs[i].phys_addr;
116                 size = regs[i].reg_size;
117
118                 size &= PAGE_MASK;
119                 if (base & ~PAGE_MASK) {
120                         unsigned long new_base = PAGE_ALIGN(base);
121
122                         size -= new_base - base;
123                         if ((long) size < 0L)
124                                 size = 0UL;
125                         base = new_base;
126                 }
127                 if (size == 0UL) {
128                         /* If it is empty, simply get rid of it.
129                          * This simplifies the logic of the other
130                          * functions that process these arrays.
131                          */
132                         memmove(&regs[i], &regs[i + 1],
133                                 (ents - i - 1) * sizeof(regs[0]));
134                         i--;
135                         ents--;
136                         continue;
137                 }
138                 regs[i].phys_addr = base;
139                 regs[i].reg_size = size;
140         }
141
142         *num_ents = ents;
143
144         sort(regs, ents, sizeof(struct linux_prom64_registers),
145              cmp_p64, NULL);
146 }
147
148 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
149
150 /* Kernel physical address base and size in bytes.  */
151 unsigned long kern_base __read_mostly;
152 unsigned long kern_size __read_mostly;
153
154 /* Initial ramdisk setup */
155 extern unsigned long sparc_ramdisk_image64;
156 extern unsigned int sparc_ramdisk_image;
157 extern unsigned int sparc_ramdisk_size;
158
159 struct page *mem_map_zero __read_mostly;
160 EXPORT_SYMBOL(mem_map_zero);
161
162 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
163
164 unsigned long sparc64_kern_pri_context __read_mostly;
165 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
166 unsigned long sparc64_kern_sec_context __read_mostly;
167
168 int num_kernel_image_mappings;
169
170 #ifdef CONFIG_DEBUG_DCFLUSH
171 atomic_t dcpage_flushes = ATOMIC_INIT(0);
172 #ifdef CONFIG_SMP
173 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
174 #endif
175 #endif
176
177 inline void flush_dcache_page_impl(struct page *page)
178 {
179         BUG_ON(tlb_type == hypervisor);
180 #ifdef CONFIG_DEBUG_DCFLUSH
181         atomic_inc(&dcpage_flushes);
182 #endif
183
184 #ifdef DCACHE_ALIASING_POSSIBLE
185         __flush_dcache_page(page_address(page),
186                             ((tlb_type == spitfire) &&
187                              page_mapping(page) != NULL));
188 #else
189         if (page_mapping(page) != NULL &&
190             tlb_type == spitfire)
191                 __flush_icache_page(__pa(page_address(page)));
192 #endif
193 }
194
195 #define PG_dcache_dirty         PG_arch_1
196 #define PG_dcache_cpu_shift     32UL
197 #define PG_dcache_cpu_mask      \
198         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
199
200 #define dcache_dirty_cpu(page) \
201         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
202
203 static inline void set_dcache_dirty(struct page *page, int this_cpu)
204 {
205         unsigned long mask = this_cpu;
206         unsigned long non_cpu_bits;
207
208         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
209         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
210
211         __asm__ __volatile__("1:\n\t"
212                              "ldx       [%2], %%g7\n\t"
213                              "and       %%g7, %1, %%g1\n\t"
214                              "or        %%g1, %0, %%g1\n\t"
215                              "casx      [%2], %%g7, %%g1\n\t"
216                              "cmp       %%g7, %%g1\n\t"
217                              "membar    #StoreLoad | #StoreStore\n\t"
218                              "bne,pn    %%xcc, 1b\n\t"
219                              " nop"
220                              : /* no outputs */
221                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222                              : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227         unsigned long mask = (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230                              "1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "srlx      %%g7, %4, %%g1\n\t"
233                              "and       %%g1, %3, %%g1\n\t"
234                              "cmp       %%g1, %0\n\t"
235                              "bne,pn    %%icc, 2f\n\t"
236                              " andn     %%g7, %1, %%g1\n\t"
237                              "casx      [%2], %%g7, %%g1\n\t"
238                              "cmp       %%g7, %%g1\n\t"
239                              "membar    #StoreLoad | #StoreStore\n\t"
240                              "bne,pn    %%xcc, 1b\n\t"
241                              " nop\n"
242                              "2:"
243                              : /* no outputs */
244                              : "r" (cpu), "r" (mask), "r" (&page->flags),
245                                "i" (PG_dcache_cpu_mask),
246                                "i" (PG_dcache_cpu_shift)
247                              : "g1", "g7");
248 }
249
250 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
251 {
252         unsigned long tsb_addr = (unsigned long) ent;
253
254         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
255                 tsb_addr = __pa(tsb_addr);
256
257         __tsb_insert(tsb_addr, tag, pte);
258 }
259
260 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
261 unsigned long _PAGE_SZBITS __read_mostly;
262
263 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
264 {
265         struct mm_struct *mm;
266         struct tsb *tsb;
267         unsigned long tag, flags;
268         unsigned long tsb_index, tsb_hash_shift;
269
270         if (tlb_type != hypervisor) {
271                 unsigned long pfn = pte_pfn(pte);
272                 unsigned long pg_flags;
273                 struct page *page;
274
275                 if (pfn_valid(pfn) &&
276                     (page = pfn_to_page(pfn), page_mapping(page)) &&
277                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
278                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
279                                    PG_dcache_cpu_mask);
280                         int this_cpu = get_cpu();
281
282                         /* This is just to optimize away some function calls
283                          * in the SMP case.
284                          */
285                         if (cpu == this_cpu)
286                                 flush_dcache_page_impl(page);
287                         else
288                                 smp_flush_dcache_page_impl(page, cpu);
289
290                         clear_dcache_dirty_cpu(page, cpu);
291
292                         put_cpu();
293                 }
294         }
295
296         mm = vma->vm_mm;
297
298         tsb_index = MM_TSB_BASE;
299         tsb_hash_shift = PAGE_SHIFT;
300
301         spin_lock_irqsave(&mm->context.lock, flags);
302
303 #ifdef CONFIG_HUGETLB_PAGE
304         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
305                 if ((tlb_type == hypervisor &&
306                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
307                     (tlb_type != hypervisor &&
308                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
309                         tsb_index = MM_TSB_HUGE;
310                         tsb_hash_shift = HPAGE_SHIFT;
311                 }
312         }
313 #endif
314
315         tsb = mm->context.tsb_block[tsb_index].tsb;
316         tsb += ((address >> tsb_hash_shift) &
317                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
318         tag = (address >> 22UL);
319         tsb_insert(tsb, tag, pte_val(pte));
320
321         spin_unlock_irqrestore(&mm->context.lock, flags);
322 }
323
324 void flush_dcache_page(struct page *page)
325 {
326         struct address_space *mapping;
327         int this_cpu;
328
329         if (tlb_type == hypervisor)
330                 return;
331
332         /* Do not bother with the expensive D-cache flush if it
333          * is merely the zero page.  The 'bigcore' testcase in GDB
334          * causes this case to run millions of times.
335          */
336         if (page == ZERO_PAGE(0))
337                 return;
338
339         this_cpu = get_cpu();
340
341         mapping = page_mapping(page);
342         if (mapping && !mapping_mapped(mapping)) {
343                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
344                 if (dirty) {
345                         int dirty_cpu = dcache_dirty_cpu(page);
346
347                         if (dirty_cpu == this_cpu)
348                                 goto out;
349                         smp_flush_dcache_page_impl(page, dirty_cpu);
350                 }
351                 set_dcache_dirty(page, this_cpu);
352         } else {
353                 /* We could delay the flush for the !page_mapping
354                  * case too.  But that case is for exec env/arg
355                  * pages and those are %99 certainly going to get
356                  * faulted into the tlb (and thus flushed) anyways.
357                  */
358                 flush_dcache_page_impl(page);
359         }
360
361 out:
362         put_cpu();
363 }
364
365 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
366 {
367         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
368         if (tlb_type == spitfire) {
369                 unsigned long kaddr;
370
371                 /* This code only runs on Spitfire cpus so this is
372                  * why we can assume _PAGE_PADDR_4U.
373                  */
374                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
375                         unsigned long paddr, mask = _PAGE_PADDR_4U;
376
377                         if (kaddr >= PAGE_OFFSET)
378                                 paddr = kaddr & mask;
379                         else {
380                                 pgd_t *pgdp = pgd_offset_k(kaddr);
381                                 pud_t *pudp = pud_offset(pgdp, kaddr);
382                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
383                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
384
385                                 paddr = pte_val(*ptep) & mask;
386                         }
387                         __flush_icache_page(paddr);
388                 }
389         }
390 }
391
392 void mmu_info(struct seq_file *m)
393 {
394         if (tlb_type == cheetah)
395                 seq_printf(m, "MMU Type\t: Cheetah\n");
396         else if (tlb_type == cheetah_plus)
397                 seq_printf(m, "MMU Type\t: Cheetah+\n");
398         else if (tlb_type == spitfire)
399                 seq_printf(m, "MMU Type\t: Spitfire\n");
400         else if (tlb_type == hypervisor)
401                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
402         else
403                 seq_printf(m, "MMU Type\t: ???\n");
404
405 #ifdef CONFIG_DEBUG_DCFLUSH
406         seq_printf(m, "DCPageFlushes\t: %d\n",
407                    atomic_read(&dcpage_flushes));
408 #ifdef CONFIG_SMP
409         seq_printf(m, "DCPageFlushesXC\t: %d\n",
410                    atomic_read(&dcpage_flushes_xcall));
411 #endif /* CONFIG_SMP */
412 #endif /* CONFIG_DEBUG_DCFLUSH */
413 }
414
415 struct linux_prom_translation prom_trans[512] __read_mostly;
416 unsigned int prom_trans_ents __read_mostly;
417
418 unsigned long kern_locked_tte_data;
419
420 /* The obp translations are saved based on 8k pagesize, since obp can
421  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
422  * HI_OBP_ADDRESS range are handled in ktlb.S.
423  */
424 static inline int in_obp_range(unsigned long vaddr)
425 {
426         return (vaddr >= LOW_OBP_ADDRESS &&
427                 vaddr < HI_OBP_ADDRESS);
428 }
429
430 static int cmp_ptrans(const void *a, const void *b)
431 {
432         const struct linux_prom_translation *x = a, *y = b;
433
434         if (x->virt > y->virt)
435                 return 1;
436         if (x->virt < y->virt)
437                 return -1;
438         return 0;
439 }
440
441 /* Read OBP translations property into 'prom_trans[]'.  */
442 static void __init read_obp_translations(void)
443 {
444         int n, node, ents, first, last, i;
445
446         node = prom_finddevice("/virtual-memory");
447         n = prom_getproplen(node, "translations");
448         if (unlikely(n == 0 || n == -1)) {
449                 prom_printf("prom_mappings: Couldn't get size.\n");
450                 prom_halt();
451         }
452         if (unlikely(n > sizeof(prom_trans))) {
453                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
454                 prom_halt();
455         }
456
457         if ((n = prom_getproperty(node, "translations",
458                                   (char *)&prom_trans[0],
459                                   sizeof(prom_trans))) == -1) {
460                 prom_printf("prom_mappings: Couldn't get property.\n");
461                 prom_halt();
462         }
463
464         n = n / sizeof(struct linux_prom_translation);
465
466         ents = n;
467
468         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
469              cmp_ptrans, NULL);
470
471         /* Now kick out all the non-OBP entries.  */
472         for (i = 0; i < ents; i++) {
473                 if (in_obp_range(prom_trans[i].virt))
474                         break;
475         }
476         first = i;
477         for (; i < ents; i++) {
478                 if (!in_obp_range(prom_trans[i].virt))
479                         break;
480         }
481         last = i;
482
483         for (i = 0; i < (last - first); i++) {
484                 struct linux_prom_translation *src = &prom_trans[i + first];
485                 struct linux_prom_translation *dest = &prom_trans[i];
486
487                 *dest = *src;
488         }
489         for (; i < ents; i++) {
490                 struct linux_prom_translation *dest = &prom_trans[i];
491                 dest->virt = dest->size = dest->data = 0x0UL;
492         }
493
494         prom_trans_ents = last - first;
495
496         if (tlb_type == spitfire) {
497                 /* Clear diag TTE bits. */
498                 for (i = 0; i < prom_trans_ents; i++)
499                         prom_trans[i].data &= ~0x0003fe0000000000UL;
500         }
501 }
502
503 static void __init hypervisor_tlb_lock(unsigned long vaddr,
504                                        unsigned long pte,
505                                        unsigned long mmu)
506 {
507         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
508
509         if (ret != 0) {
510                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
511                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
512                 prom_halt();
513         }
514 }
515
516 static unsigned long kern_large_tte(unsigned long paddr);
517
518 static void __init remap_kernel(void)
519 {
520         unsigned long phys_page, tte_vaddr, tte_data;
521         int i, tlb_ent = sparc64_highest_locked_tlbent();
522
523         tte_vaddr = (unsigned long) KERNBASE;
524         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
525         tte_data = kern_large_tte(phys_page);
526
527         kern_locked_tte_data = tte_data;
528
529         /* Now lock us into the TLBs via Hypervisor or OBP. */
530         if (tlb_type == hypervisor) {
531                 for (i = 0; i < num_kernel_image_mappings; i++) {
532                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
533                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
534                         tte_vaddr += 0x400000;
535                         tte_data += 0x400000;
536                 }
537         } else {
538                 for (i = 0; i < num_kernel_image_mappings; i++) {
539                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
540                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
541                         tte_vaddr += 0x400000;
542                         tte_data += 0x400000;
543                 }
544                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
545         }
546         if (tlb_type == cheetah_plus) {
547                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
548                                             CTX_CHEETAH_PLUS_NUC);
549                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
550                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
551         }
552 }
553
554
555 static void __init inherit_prom_mappings(void)
556 {
557         /* Now fixup OBP's idea about where we really are mapped. */
558         printk("Remapping the kernel... ");
559         remap_kernel();
560         printk("done.\n");
561 }
562
563 void prom_world(int enter)
564 {
565         if (!enter)
566                 set_fs((mm_segment_t) { get_thread_current_ds() });
567
568         __asm__ __volatile__("flushw");
569 }
570
571 void __flush_dcache_range(unsigned long start, unsigned long end)
572 {
573         unsigned long va;
574
575         if (tlb_type == spitfire) {
576                 int n = 0;
577
578                 for (va = start; va < end; va += 32) {
579                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
580                         if (++n >= 512)
581                                 break;
582                 }
583         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
584                 start = __pa(start);
585                 end = __pa(end);
586                 for (va = start; va < end; va += 32)
587                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
588                                              "membar #Sync"
589                                              : /* no outputs */
590                                              : "r" (va),
591                                                "i" (ASI_DCACHE_INVALIDATE));
592         }
593 }
594
595 /* get_new_mmu_context() uses "cache + 1".  */
596 DEFINE_SPINLOCK(ctx_alloc_lock);
597 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
598 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
599 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
600 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
601
602 /* Caller does TLB context flushing on local CPU if necessary.
603  * The caller also ensures that CTX_VALID(mm->context) is false.
604  *
605  * We must be careful about boundary cases so that we never
606  * let the user have CTX 0 (nucleus) or we ever use a CTX
607  * version of zero (and thus NO_CONTEXT would not be caught
608  * by version mis-match tests in mmu_context.h).
609  *
610  * Always invoked with interrupts disabled.
611  */
612 void get_new_mmu_context(struct mm_struct *mm)
613 {
614         unsigned long ctx, new_ctx;
615         unsigned long orig_pgsz_bits;
616         unsigned long flags;
617         int new_version;
618
619         spin_lock_irqsave(&ctx_alloc_lock, flags);
620         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
621         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
622         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
623         new_version = 0;
624         if (new_ctx >= (1 << CTX_NR_BITS)) {
625                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
626                 if (new_ctx >= ctx) {
627                         int i;
628                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
629                                 CTX_FIRST_VERSION;
630                         if (new_ctx == 1)
631                                 new_ctx = CTX_FIRST_VERSION;
632
633                         /* Don't call memset, for 16 entries that's just
634                          * plain silly...
635                          */
636                         mmu_context_bmap[0] = 3;
637                         mmu_context_bmap[1] = 0;
638                         mmu_context_bmap[2] = 0;
639                         mmu_context_bmap[3] = 0;
640                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
641                                 mmu_context_bmap[i + 0] = 0;
642                                 mmu_context_bmap[i + 1] = 0;
643                                 mmu_context_bmap[i + 2] = 0;
644                                 mmu_context_bmap[i + 3] = 0;
645                         }
646                         new_version = 1;
647                         goto out;
648                 }
649         }
650         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
651         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
652 out:
653         tlb_context_cache = new_ctx;
654         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
655         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
656
657         if (unlikely(new_version))
658                 smp_new_mmu_context_version();
659 }
660
661 static int numa_enabled = 1;
662 static int numa_debug;
663
664 static int __init early_numa(char *p)
665 {
666         if (!p)
667                 return 0;
668
669         if (strstr(p, "off"))
670                 numa_enabled = 0;
671
672         if (strstr(p, "debug"))
673                 numa_debug = 1;
674
675         return 0;
676 }
677 early_param("numa", early_numa);
678
679 #define numadbg(f, a...) \
680 do {    if (numa_debug) \
681                 printk(KERN_INFO f, ## a); \
682 } while (0)
683
684 static void __init find_ramdisk(unsigned long phys_base)
685 {
686 #ifdef CONFIG_BLK_DEV_INITRD
687         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
688                 unsigned long ramdisk_image;
689
690                 /* Older versions of the bootloader only supported a
691                  * 32-bit physical address for the ramdisk image
692                  * location, stored at sparc_ramdisk_image.  Newer
693                  * SILO versions set sparc_ramdisk_image to zero and
694                  * provide a full 64-bit physical address at
695                  * sparc_ramdisk_image64.
696                  */
697                 ramdisk_image = sparc_ramdisk_image;
698                 if (!ramdisk_image)
699                         ramdisk_image = sparc_ramdisk_image64;
700
701                 /* Another bootloader quirk.  The bootloader normalizes
702                  * the physical address to KERNBASE, so we have to
703                  * factor that back out and add in the lowest valid
704                  * physical page address to get the true physical address.
705                  */
706                 ramdisk_image -= KERNBASE;
707                 ramdisk_image += phys_base;
708
709                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
710                         ramdisk_image, sparc_ramdisk_size);
711
712                 initrd_start = ramdisk_image;
713                 initrd_end = ramdisk_image + sparc_ramdisk_size;
714
715                 lmb_reserve(initrd_start, sparc_ramdisk_size);
716
717                 initrd_start += PAGE_OFFSET;
718                 initrd_end += PAGE_OFFSET;
719         }
720 #endif
721 }
722
723 struct node_mem_mask {
724         unsigned long mask;
725         unsigned long val;
726         unsigned long bootmem_paddr;
727 };
728 static struct node_mem_mask node_masks[MAX_NUMNODES];
729 static int num_node_masks;
730
731 int numa_cpu_lookup_table[NR_CPUS];
732 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
733
734 #ifdef CONFIG_NEED_MULTIPLE_NODES
735
736 struct mdesc_mblock {
737         u64     base;
738         u64     size;
739         u64     offset; /* RA-to-PA */
740 };
741 static struct mdesc_mblock *mblocks;
742 static int num_mblocks;
743
744 static unsigned long ra_to_pa(unsigned long addr)
745 {
746         int i;
747
748         for (i = 0; i < num_mblocks; i++) {
749                 struct mdesc_mblock *m = &mblocks[i];
750
751                 if (addr >= m->base &&
752                     addr < (m->base + m->size)) {
753                         addr += m->offset;
754                         break;
755                 }
756         }
757         return addr;
758 }
759
760 static int find_node(unsigned long addr)
761 {
762         int i;
763
764         addr = ra_to_pa(addr);
765         for (i = 0; i < num_node_masks; i++) {
766                 struct node_mem_mask *p = &node_masks[i];
767
768                 if ((addr & p->mask) == p->val)
769                         return i;
770         }
771         return -1;
772 }
773
774 static unsigned long nid_range(unsigned long start, unsigned long end,
775                                int *nid)
776 {
777         *nid = find_node(start);
778         start += PAGE_SIZE;
779         while (start < end) {
780                 int n = find_node(start);
781
782                 if (n != *nid)
783                         break;
784                 start += PAGE_SIZE;
785         }
786
787         if (start > end)
788                 start = end;
789
790         return start;
791 }
792 #else
793 static unsigned long nid_range(unsigned long start, unsigned long end,
794                                int *nid)
795 {
796         *nid = 0;
797         return end;
798 }
799 #endif
800
801 /* This must be invoked after performing all of the necessary
802  * add_active_range() calls for 'nid'.  We need to be able to get
803  * correct data from get_pfn_range_for_nid().
804  */
805 static void __init allocate_node_data(int nid)
806 {
807         unsigned long paddr, num_pages, start_pfn, end_pfn;
808         struct pglist_data *p;
809
810 #ifdef CONFIG_NEED_MULTIPLE_NODES
811         paddr = lmb_alloc_nid(sizeof(struct pglist_data),
812                               SMP_CACHE_BYTES, nid, nid_range);
813         if (!paddr) {
814                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
815                 prom_halt();
816         }
817         NODE_DATA(nid) = __va(paddr);
818         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
819
820         NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
821 #endif
822
823         p = NODE_DATA(nid);
824
825         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
826         p->node_start_pfn = start_pfn;
827         p->node_spanned_pages = end_pfn - start_pfn;
828
829         if (p->node_spanned_pages) {
830                 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
831
832                 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
833                                       nid_range);
834                 if (!paddr) {
835                         prom_printf("Cannot allocate bootmap for nid[%d]\n",
836                                   nid);
837                         prom_halt();
838                 }
839                 node_masks[nid].bootmem_paddr = paddr;
840         }
841 }
842
843 static void init_node_masks_nonnuma(void)
844 {
845         int i;
846
847         numadbg("Initializing tables for non-numa.\n");
848
849         node_masks[0].mask = node_masks[0].val = 0;
850         num_node_masks = 1;
851
852         for (i = 0; i < NR_CPUS; i++)
853                 numa_cpu_lookup_table[i] = 0;
854
855         numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
856 }
857
858 #ifdef CONFIG_NEED_MULTIPLE_NODES
859 struct pglist_data *node_data[MAX_NUMNODES];
860
861 EXPORT_SYMBOL(numa_cpu_lookup_table);
862 EXPORT_SYMBOL(numa_cpumask_lookup_table);
863 EXPORT_SYMBOL(node_data);
864
865 struct mdesc_mlgroup {
866         u64     node;
867         u64     latency;
868         u64     match;
869         u64     mask;
870 };
871 static struct mdesc_mlgroup *mlgroups;
872 static int num_mlgroups;
873
874 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
875                                    u32 cfg_handle)
876 {
877         u64 arc;
878
879         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
880                 u64 target = mdesc_arc_target(md, arc);
881                 const u64 *val;
882
883                 val = mdesc_get_property(md, target,
884                                          "cfg-handle", NULL);
885                 if (val && *val == cfg_handle)
886                         return 0;
887         }
888         return -ENODEV;
889 }
890
891 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
892                                     u32 cfg_handle)
893 {
894         u64 arc, candidate, best_latency = ~(u64)0;
895
896         candidate = MDESC_NODE_NULL;
897         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
898                 u64 target = mdesc_arc_target(md, arc);
899                 const char *name = mdesc_node_name(md, target);
900                 const u64 *val;
901
902                 if (strcmp(name, "pio-latency-group"))
903                         continue;
904
905                 val = mdesc_get_property(md, target, "latency", NULL);
906                 if (!val)
907                         continue;
908
909                 if (*val < best_latency) {
910                         candidate = target;
911                         best_latency = *val;
912                 }
913         }
914
915         if (candidate == MDESC_NODE_NULL)
916                 return -ENODEV;
917
918         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
919 }
920
921 int of_node_to_nid(struct device_node *dp)
922 {
923         const struct linux_prom64_registers *regs;
924         struct mdesc_handle *md;
925         u32 cfg_handle;
926         int count, nid;
927         u64 grp;
928
929         /* This is the right thing to do on currently supported
930          * SUN4U NUMA platforms as well, as the PCI controller does
931          * not sit behind any particular memory controller.
932          */
933         if (!mlgroups)
934                 return -1;
935
936         regs = of_get_property(dp, "reg", NULL);
937         if (!regs)
938                 return -1;
939
940         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
941
942         md = mdesc_grab();
943
944         count = 0;
945         nid = -1;
946         mdesc_for_each_node_by_name(md, grp, "group") {
947                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
948                         nid = count;
949                         break;
950                 }
951                 count++;
952         }
953
954         mdesc_release(md);
955
956         return nid;
957 }
958
959 static void __init add_node_ranges(void)
960 {
961         int i;
962
963         for (i = 0; i < lmb.memory.cnt; i++) {
964                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
965                 unsigned long start, end;
966
967                 start = lmb.memory.region[i].base;
968                 end = start + size;
969                 while (start < end) {
970                         unsigned long this_end;
971                         int nid;
972
973                         this_end = nid_range(start, end, &nid);
974
975                         numadbg("Adding active range nid[%d] "
976                                 "start[%lx] end[%lx]\n",
977                                 nid, start, this_end);
978
979                         add_active_range(nid,
980                                          start >> PAGE_SHIFT,
981                                          this_end >> PAGE_SHIFT);
982
983                         start = this_end;
984                 }
985         }
986 }
987
988 static int __init grab_mlgroups(struct mdesc_handle *md)
989 {
990         unsigned long paddr;
991         int count = 0;
992         u64 node;
993
994         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
995                 count++;
996         if (!count)
997                 return -ENOENT;
998
999         paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1000                           SMP_CACHE_BYTES);
1001         if (!paddr)
1002                 return -ENOMEM;
1003
1004         mlgroups = __va(paddr);
1005         num_mlgroups = count;
1006
1007         count = 0;
1008         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1009                 struct mdesc_mlgroup *m = &mlgroups[count++];
1010                 const u64 *val;
1011
1012                 m->node = node;
1013
1014                 val = mdesc_get_property(md, node, "latency", NULL);
1015                 m->latency = *val;
1016                 val = mdesc_get_property(md, node, "address-match", NULL);
1017                 m->match = *val;
1018                 val = mdesc_get_property(md, node, "address-mask", NULL);
1019                 m->mask = *val;
1020
1021                 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1022                         "match[%lx] mask[%lx]\n",
1023                         count - 1, m->node, m->latency, m->match, m->mask);
1024         }
1025
1026         return 0;
1027 }
1028
1029 static int __init grab_mblocks(struct mdesc_handle *md)
1030 {
1031         unsigned long paddr;
1032         int count = 0;
1033         u64 node;
1034
1035         mdesc_for_each_node_by_name(md, node, "mblock")
1036                 count++;
1037         if (!count)
1038                 return -ENOENT;
1039
1040         paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1041                           SMP_CACHE_BYTES);
1042         if (!paddr)
1043                 return -ENOMEM;
1044
1045         mblocks = __va(paddr);
1046         num_mblocks = count;
1047
1048         count = 0;
1049         mdesc_for_each_node_by_name(md, node, "mblock") {
1050                 struct mdesc_mblock *m = &mblocks[count++];
1051                 const u64 *val;
1052
1053                 val = mdesc_get_property(md, node, "base", NULL);
1054                 m->base = *val;
1055                 val = mdesc_get_property(md, node, "size", NULL);
1056                 m->size = *val;
1057                 val = mdesc_get_property(md, node,
1058                                          "address-congruence-offset", NULL);
1059                 m->offset = *val;
1060
1061                 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1062                         count - 1, m->base, m->size, m->offset);
1063         }
1064
1065         return 0;
1066 }
1067
1068 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1069                                                u64 grp, cpumask_t *mask)
1070 {
1071         u64 arc;
1072
1073         cpus_clear(*mask);
1074
1075         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1076                 u64 target = mdesc_arc_target(md, arc);
1077                 const char *name = mdesc_node_name(md, target);
1078                 const u64 *id;
1079
1080                 if (strcmp(name, "cpu"))
1081                         continue;
1082                 id = mdesc_get_property(md, target, "id", NULL);
1083                 if (*id < NR_CPUS)
1084                         cpu_set(*id, *mask);
1085         }
1086 }
1087
1088 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1089 {
1090         int i;
1091
1092         for (i = 0; i < num_mlgroups; i++) {
1093                 struct mdesc_mlgroup *m = &mlgroups[i];
1094                 if (m->node == node)
1095                         return m;
1096         }
1097         return NULL;
1098 }
1099
1100 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1101                                       int index)
1102 {
1103         struct mdesc_mlgroup *candidate = NULL;
1104         u64 arc, best_latency = ~(u64)0;
1105         struct node_mem_mask *n;
1106
1107         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1108                 u64 target = mdesc_arc_target(md, arc);
1109                 struct mdesc_mlgroup *m = find_mlgroup(target);
1110                 if (!m)
1111                         continue;
1112                 if (m->latency < best_latency) {
1113                         candidate = m;
1114                         best_latency = m->latency;
1115                 }
1116         }
1117         if (!candidate)
1118                 return -ENOENT;
1119
1120         if (num_node_masks != index) {
1121                 printk(KERN_ERR "Inconsistent NUMA state, "
1122                        "index[%d] != num_node_masks[%d]\n",
1123                        index, num_node_masks);
1124                 return -EINVAL;
1125         }
1126
1127         n = &node_masks[num_node_masks++];
1128
1129         n->mask = candidate->mask;
1130         n->val = candidate->match;
1131
1132         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1133                 index, n->mask, n->val, candidate->latency);
1134
1135         return 0;
1136 }
1137
1138 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1139                                          int index)
1140 {
1141         cpumask_t mask;
1142         int cpu;
1143
1144         numa_parse_mdesc_group_cpus(md, grp, &mask);
1145
1146         for_each_cpu_mask(cpu, mask)
1147                 numa_cpu_lookup_table[cpu] = index;
1148         numa_cpumask_lookup_table[index] = mask;
1149
1150         if (numa_debug) {
1151                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1152                 for_each_cpu_mask(cpu, mask)
1153                         printk("%d ", cpu);
1154                 printk("]\n");
1155         }
1156
1157         return numa_attach_mlgroup(md, grp, index);
1158 }
1159
1160 static int __init numa_parse_mdesc(void)
1161 {
1162         struct mdesc_handle *md = mdesc_grab();
1163         int i, err, count;
1164         u64 node;
1165
1166         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1167         if (node == MDESC_NODE_NULL) {
1168                 mdesc_release(md);
1169                 return -ENOENT;
1170         }
1171
1172         err = grab_mblocks(md);
1173         if (err < 0)
1174                 goto out;
1175
1176         err = grab_mlgroups(md);
1177         if (err < 0)
1178                 goto out;
1179
1180         count = 0;
1181         mdesc_for_each_node_by_name(md, node, "group") {
1182                 err = numa_parse_mdesc_group(md, node, count);
1183                 if (err < 0)
1184                         break;
1185                 count++;
1186         }
1187
1188         add_node_ranges();
1189
1190         for (i = 0; i < num_node_masks; i++) {
1191                 allocate_node_data(i);
1192                 node_set_online(i);
1193         }
1194
1195         err = 0;
1196 out:
1197         mdesc_release(md);
1198         return err;
1199 }
1200
1201 static int __init numa_parse_jbus(void)
1202 {
1203         unsigned long cpu, index;
1204
1205         /* NUMA node id is encoded in bits 36 and higher, and there is
1206          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1207          */
1208         index = 0;
1209         for_each_present_cpu(cpu) {
1210                 numa_cpu_lookup_table[cpu] = index;
1211                 numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
1212                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1213                 node_masks[index].val = cpu << 36UL;
1214
1215                 index++;
1216         }
1217         num_node_masks = index;
1218
1219         add_node_ranges();
1220
1221         for (index = 0; index < num_node_masks; index++) {
1222                 allocate_node_data(index);
1223                 node_set_online(index);
1224         }
1225
1226         return 0;
1227 }
1228
1229 static int __init numa_parse_sun4u(void)
1230 {
1231         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1232                 unsigned long ver;
1233
1234                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1235                 if ((ver >> 32UL) == __JALAPENO_ID ||
1236                     (ver >> 32UL) == __SERRANO_ID)
1237                         return numa_parse_jbus();
1238         }
1239         return -1;
1240 }
1241
1242 static int __init bootmem_init_numa(void)
1243 {
1244         int err = -1;
1245
1246         numadbg("bootmem_init_numa()\n");
1247
1248         if (numa_enabled) {
1249                 if (tlb_type == hypervisor)
1250                         err = numa_parse_mdesc();
1251                 else
1252                         err = numa_parse_sun4u();
1253         }
1254         return err;
1255 }
1256
1257 #else
1258
1259 static int bootmem_init_numa(void)
1260 {
1261         return -1;
1262 }
1263
1264 #endif
1265
1266 static void __init bootmem_init_nonnuma(void)
1267 {
1268         unsigned long top_of_ram = lmb_end_of_DRAM();
1269         unsigned long total_ram = lmb_phys_mem_size();
1270         unsigned int i;
1271
1272         numadbg("bootmem_init_nonnuma()\n");
1273
1274         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1275                top_of_ram, total_ram);
1276         printk(KERN_INFO "Memory hole size: %ldMB\n",
1277                (top_of_ram - total_ram) >> 20);
1278
1279         init_node_masks_nonnuma();
1280
1281         for (i = 0; i < lmb.memory.cnt; i++) {
1282                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1283                 unsigned long start_pfn, end_pfn;
1284
1285                 if (!size)
1286                         continue;
1287
1288                 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1289                 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1290                 add_active_range(0, start_pfn, end_pfn);
1291         }
1292
1293         allocate_node_data(0);
1294
1295         node_set_online(0);
1296 }
1297
1298 static void __init reserve_range_in_node(int nid, unsigned long start,
1299                                          unsigned long end)
1300 {
1301         numadbg("    reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1302                 nid, start, end);
1303         while (start < end) {
1304                 unsigned long this_end;
1305                 int n;
1306
1307                 this_end = nid_range(start, end, &n);
1308                 if (n == nid) {
1309                         numadbg("      MATCH reserving range [%lx:%lx]\n",
1310                                 start, this_end);
1311                         reserve_bootmem_node(NODE_DATA(nid), start,
1312                                              (this_end - start), BOOTMEM_DEFAULT);
1313                 } else
1314                         numadbg("      NO MATCH, advancing start to %lx\n",
1315                                 this_end);
1316
1317                 start = this_end;
1318         }
1319 }
1320
1321 static void __init trim_reserved_in_node(int nid)
1322 {
1323         int i;
1324
1325         numadbg("  trim_reserved_in_node(%d)\n", nid);
1326
1327         for (i = 0; i < lmb.reserved.cnt; i++) {
1328                 unsigned long start = lmb.reserved.region[i].base;
1329                 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1330                 unsigned long end = start + size;
1331
1332                 reserve_range_in_node(nid, start, end);
1333         }
1334 }
1335
1336 static void __init bootmem_init_one_node(int nid)
1337 {
1338         struct pglist_data *p;
1339
1340         numadbg("bootmem_init_one_node(%d)\n", nid);
1341
1342         p = NODE_DATA(nid);
1343
1344         if (p->node_spanned_pages) {
1345                 unsigned long paddr = node_masks[nid].bootmem_paddr;
1346                 unsigned long end_pfn;
1347
1348                 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1349
1350                 numadbg("  init_bootmem_node(%d, %lx, %lx, %lx)\n",
1351                         nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1352
1353                 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1354                                   p->node_start_pfn, end_pfn);
1355
1356                 numadbg("  free_bootmem_with_active_regions(%d, %lx)\n",
1357                         nid, end_pfn);
1358                 free_bootmem_with_active_regions(nid, end_pfn);
1359
1360                 trim_reserved_in_node(nid);
1361
1362                 numadbg("  sparse_memory_present_with_active_regions(%d)\n",
1363                         nid);
1364                 sparse_memory_present_with_active_regions(nid);
1365         }
1366 }
1367
1368 static unsigned long __init bootmem_init(unsigned long phys_base)
1369 {
1370         unsigned long end_pfn;
1371         int nid;
1372
1373         end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1374         max_pfn = max_low_pfn = end_pfn;
1375         min_low_pfn = (phys_base >> PAGE_SHIFT);
1376
1377         if (bootmem_init_numa() < 0)
1378                 bootmem_init_nonnuma();
1379
1380         /* XXX cpu notifier XXX */
1381
1382         for_each_online_node(nid)
1383                 bootmem_init_one_node(nid);
1384
1385         sparse_init();
1386
1387         return end_pfn;
1388 }
1389
1390 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1391 static int pall_ents __initdata;
1392
1393 #ifdef CONFIG_DEBUG_PAGEALLOC
1394 static unsigned long __ref kernel_map_range(unsigned long pstart,
1395                                             unsigned long pend, pgprot_t prot)
1396 {
1397         unsigned long vstart = PAGE_OFFSET + pstart;
1398         unsigned long vend = PAGE_OFFSET + pend;
1399         unsigned long alloc_bytes = 0UL;
1400
1401         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1402                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1403                             vstart, vend);
1404                 prom_halt();
1405         }
1406
1407         while (vstart < vend) {
1408                 unsigned long this_end, paddr = __pa(vstart);
1409                 pgd_t *pgd = pgd_offset_k(vstart);
1410                 pud_t *pud;
1411                 pmd_t *pmd;
1412                 pte_t *pte;
1413
1414                 pud = pud_offset(pgd, vstart);
1415                 if (pud_none(*pud)) {
1416                         pmd_t *new;
1417
1418                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1419                         alloc_bytes += PAGE_SIZE;
1420                         pud_populate(&init_mm, pud, new);
1421                 }
1422
1423                 pmd = pmd_offset(pud, vstart);
1424                 if (!pmd_present(*pmd)) {
1425                         pte_t *new;
1426
1427                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1428                         alloc_bytes += PAGE_SIZE;
1429                         pmd_populate_kernel(&init_mm, pmd, new);
1430                 }
1431
1432                 pte = pte_offset_kernel(pmd, vstart);
1433                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1434                 if (this_end > vend)
1435                         this_end = vend;
1436
1437                 while (vstart < this_end) {
1438                         pte_val(*pte) = (paddr | pgprot_val(prot));
1439
1440                         vstart += PAGE_SIZE;
1441                         paddr += PAGE_SIZE;
1442                         pte++;
1443                 }
1444         }
1445
1446         return alloc_bytes;
1447 }
1448
1449 extern unsigned int kvmap_linear_patch[1];
1450 #endif /* CONFIG_DEBUG_PAGEALLOC */
1451
1452 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1453 {
1454         const unsigned long shift_256MB = 28;
1455         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1456         const unsigned long size_256MB = (1UL << shift_256MB);
1457
1458         while (start < end) {
1459                 long remains;
1460
1461                 remains = end - start;
1462                 if (remains < size_256MB)
1463                         break;
1464
1465                 if (start & mask_256MB) {
1466                         start = (start + size_256MB) & ~mask_256MB;
1467                         continue;
1468                 }
1469
1470                 while (remains >= size_256MB) {
1471                         unsigned long index = start >> shift_256MB;
1472
1473                         __set_bit(index, kpte_linear_bitmap);
1474
1475                         start += size_256MB;
1476                         remains -= size_256MB;
1477                 }
1478         }
1479 }
1480
1481 static void __init init_kpte_bitmap(void)
1482 {
1483         unsigned long i;
1484
1485         for (i = 0; i < pall_ents; i++) {
1486                 unsigned long phys_start, phys_end;
1487
1488                 phys_start = pall[i].phys_addr;
1489                 phys_end = phys_start + pall[i].reg_size;
1490
1491                 mark_kpte_bitmap(phys_start, phys_end);
1492         }
1493 }
1494
1495 static void __init kernel_physical_mapping_init(void)
1496 {
1497 #ifdef CONFIG_DEBUG_PAGEALLOC
1498         unsigned long i, mem_alloced = 0UL;
1499
1500         for (i = 0; i < pall_ents; i++) {
1501                 unsigned long phys_start, phys_end;
1502
1503                 phys_start = pall[i].phys_addr;
1504                 phys_end = phys_start + pall[i].reg_size;
1505
1506                 mem_alloced += kernel_map_range(phys_start, phys_end,
1507                                                 PAGE_KERNEL);
1508         }
1509
1510         printk("Allocated %ld bytes for kernel page tables.\n",
1511                mem_alloced);
1512
1513         kvmap_linear_patch[0] = 0x01000000; /* nop */
1514         flushi(&kvmap_linear_patch[0]);
1515
1516         __flush_tlb_all();
1517 #endif
1518 }
1519
1520 #ifdef CONFIG_DEBUG_PAGEALLOC
1521 void kernel_map_pages(struct page *page, int numpages, int enable)
1522 {
1523         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1524         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1525
1526         kernel_map_range(phys_start, phys_end,
1527                          (enable ? PAGE_KERNEL : __pgprot(0)));
1528
1529         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1530                                PAGE_OFFSET + phys_end);
1531
1532         /* we should perform an IPI and flush all tlbs,
1533          * but that can deadlock->flush only current cpu.
1534          */
1535         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1536                                  PAGE_OFFSET + phys_end);
1537 }
1538 #endif
1539
1540 unsigned long __init find_ecache_flush_span(unsigned long size)
1541 {
1542         int i;
1543
1544         for (i = 0; i < pavail_ents; i++) {
1545                 if (pavail[i].reg_size >= size)
1546                         return pavail[i].phys_addr;
1547         }
1548
1549         return ~0UL;
1550 }
1551
1552 static void __init tsb_phys_patch(void)
1553 {
1554         struct tsb_ldquad_phys_patch_entry *pquad;
1555         struct tsb_phys_patch_entry *p;
1556
1557         pquad = &__tsb_ldquad_phys_patch;
1558         while (pquad < &__tsb_ldquad_phys_patch_end) {
1559                 unsigned long addr = pquad->addr;
1560
1561                 if (tlb_type == hypervisor)
1562                         *(unsigned int *) addr = pquad->sun4v_insn;
1563                 else
1564                         *(unsigned int *) addr = pquad->sun4u_insn;
1565                 wmb();
1566                 __asm__ __volatile__("flush     %0"
1567                                      : /* no outputs */
1568                                      : "r" (addr));
1569
1570                 pquad++;
1571         }
1572
1573         p = &__tsb_phys_patch;
1574         while (p < &__tsb_phys_patch_end) {
1575                 unsigned long addr = p->addr;
1576
1577                 *(unsigned int *) addr = p->insn;
1578                 wmb();
1579                 __asm__ __volatile__("flush     %0"
1580                                      : /* no outputs */
1581                                      : "r" (addr));
1582
1583                 p++;
1584         }
1585 }
1586
1587 /* Don't mark as init, we give this to the Hypervisor.  */
1588 #ifndef CONFIG_DEBUG_PAGEALLOC
1589 #define NUM_KTSB_DESCR  2
1590 #else
1591 #define NUM_KTSB_DESCR  1
1592 #endif
1593 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1594 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1595
1596 static void __init sun4v_ktsb_init(void)
1597 {
1598         unsigned long ktsb_pa;
1599
1600         /* First KTSB for PAGE_SIZE mappings.  */
1601         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1602
1603         switch (PAGE_SIZE) {
1604         case 8 * 1024:
1605         default:
1606                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1607                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1608                 break;
1609
1610         case 64 * 1024:
1611                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1612                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1613                 break;
1614
1615         case 512 * 1024:
1616                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1617                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1618                 break;
1619
1620         case 4 * 1024 * 1024:
1621                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1622                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1623                 break;
1624         };
1625
1626         ktsb_descr[0].assoc = 1;
1627         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1628         ktsb_descr[0].ctx_idx = 0;
1629         ktsb_descr[0].tsb_base = ktsb_pa;
1630         ktsb_descr[0].resv = 0;
1631
1632 #ifndef CONFIG_DEBUG_PAGEALLOC
1633         /* Second KTSB for 4MB/256MB mappings.  */
1634         ktsb_pa = (kern_base +
1635                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1636
1637         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1638         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1639                                    HV_PGSZ_MASK_256MB);
1640         ktsb_descr[1].assoc = 1;
1641         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1642         ktsb_descr[1].ctx_idx = 0;
1643         ktsb_descr[1].tsb_base = ktsb_pa;
1644         ktsb_descr[1].resv = 0;
1645 #endif
1646 }
1647
1648 void __cpuinit sun4v_ktsb_register(void)
1649 {
1650         unsigned long pa, ret;
1651
1652         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1653
1654         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1655         if (ret != 0) {
1656                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1657                             "errors with %lx\n", pa, ret);
1658                 prom_halt();
1659         }
1660 }
1661
1662 /* paging_init() sets up the page tables */
1663
1664 static unsigned long last_valid_pfn;
1665 pgd_t swapper_pg_dir[2048];
1666
1667 static void sun4u_pgprot_init(void);
1668 static void sun4v_pgprot_init(void);
1669
1670 /* Dummy function */
1671 void __init setup_per_cpu_areas(void)
1672 {
1673 }
1674
1675 void __init paging_init(void)
1676 {
1677         unsigned long end_pfn, shift, phys_base;
1678         unsigned long real_end, i;
1679
1680         /* These build time checkes make sure that the dcache_dirty_cpu()
1681          * page->flags usage will work.
1682          *
1683          * When a page gets marked as dcache-dirty, we store the
1684          * cpu number starting at bit 32 in the page->flags.  Also,
1685          * functions like clear_dcache_dirty_cpu use the cpu mask
1686          * in 13-bit signed-immediate instruction fields.
1687          */
1688
1689         /*
1690          * Page flags must not reach into upper 32 bits that are used
1691          * for the cpu number
1692          */
1693         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1694
1695         /*
1696          * The bit fields placed in the high range must not reach below
1697          * the 32 bit boundary. Otherwise we cannot place the cpu field
1698          * at the 32 bit boundary.
1699          */
1700         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1701                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1702
1703         BUILD_BUG_ON(NR_CPUS > 4096);
1704
1705         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1706         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1707
1708         /* Invalidate both kernel TSBs.  */
1709         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1712 #endif
1713
1714         if (tlb_type == hypervisor)
1715                 sun4v_pgprot_init();
1716         else
1717                 sun4u_pgprot_init();
1718
1719         if (tlb_type == cheetah_plus ||
1720             tlb_type == hypervisor)
1721                 tsb_phys_patch();
1722
1723         if (tlb_type == hypervisor) {
1724                 sun4v_patch_tlb_handlers();
1725                 sun4v_ktsb_init();
1726         }
1727
1728         lmb_init();
1729
1730         /* Find available physical memory...
1731          *
1732          * Read it twice in order to work around a bug in openfirmware.
1733          * The call to grab this table itself can cause openfirmware to
1734          * allocate memory, which in turn can take away some space from
1735          * the list of available memory.  Reading it twice makes sure
1736          * we really do get the final value.
1737          */
1738         read_obp_translations();
1739         read_obp_memory("reg", &pall[0], &pall_ents);
1740         read_obp_memory("available", &pavail[0], &pavail_ents);
1741         read_obp_memory("available", &pavail[0], &pavail_ents);
1742
1743         phys_base = 0xffffffffffffffffUL;
1744         for (i = 0; i < pavail_ents; i++) {
1745                 phys_base = min(phys_base, pavail[i].phys_addr);
1746                 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1747         }
1748
1749         lmb_reserve(kern_base, kern_size);
1750
1751         find_ramdisk(phys_base);
1752
1753         lmb_enforce_memory_limit(cmdline_memory_size);
1754
1755         lmb_analyze();
1756         lmb_dump_all();
1757
1758         set_bit(0, mmu_context_bmap);
1759
1760         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1761
1762         real_end = (unsigned long)_end;
1763         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1764         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1765                num_kernel_image_mappings);
1766
1767         /* Set kernel pgd to upper alias so physical page computations
1768          * work.
1769          */
1770         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1771         
1772         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1773
1774         /* Now can init the kernel/bad page tables. */
1775         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1776                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1777         
1778         inherit_prom_mappings();
1779         
1780         init_kpte_bitmap();
1781
1782         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1783         setup_tba();
1784
1785         __flush_tlb_all();
1786
1787         if (tlb_type == hypervisor)
1788                 sun4v_ktsb_register();
1789
1790         /* We must setup the per-cpu areas before we pull in the
1791          * PROM and the MDESC.  The code there fills in cpu and
1792          * other information into per-cpu data structures.
1793          */
1794         real_setup_per_cpu_areas();
1795
1796         prom_build_devicetree();
1797
1798         if (tlb_type == hypervisor)
1799                 sun4v_mdesc_init();
1800
1801         /* Once the OF device tree and MDESC have been setup, we know
1802          * the list of possible cpus.  Therefore we can allocate the
1803          * IRQ stacks.
1804          */
1805         for_each_possible_cpu(i) {
1806                 /* XXX Use node local allocations... XXX */
1807                 softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1808                 hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
1809         }
1810
1811         /* Setup bootmem... */
1812         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1813
1814 #ifndef CONFIG_NEED_MULTIPLE_NODES
1815         max_mapnr = last_valid_pfn;
1816 #endif
1817         kernel_physical_mapping_init();
1818
1819         {
1820                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1821
1822                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1823
1824                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1825
1826                 free_area_init_nodes(max_zone_pfns);
1827         }
1828
1829         printk("Booting Linux...\n");
1830 }
1831
1832 int __init page_in_phys_avail(unsigned long paddr)
1833 {
1834         int i;
1835
1836         paddr &= PAGE_MASK;
1837
1838         for (i = 0; i < pavail_ents; i++) {
1839                 unsigned long start, end;
1840
1841                 start = pavail[i].phys_addr;
1842                 end = start + pavail[i].reg_size;
1843
1844                 if (paddr >= start && paddr < end)
1845                         return 1;
1846         }
1847         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1848                 return 1;
1849 #ifdef CONFIG_BLK_DEV_INITRD
1850         if (paddr >= __pa(initrd_start) &&
1851             paddr < __pa(PAGE_ALIGN(initrd_end)))
1852                 return 1;
1853 #endif
1854
1855         return 0;
1856 }
1857
1858 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1859 static int pavail_rescan_ents __initdata;
1860
1861 /* Certain OBP calls, such as fetching "available" properties, can
1862  * claim physical memory.  So, along with initializing the valid
1863  * address bitmap, what we do here is refetch the physical available
1864  * memory list again, and make sure it provides at least as much
1865  * memory as 'pavail' does.
1866  */
1867 static void __init setup_valid_addr_bitmap_from_pavail(void)
1868 {
1869         int i;
1870
1871         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1872
1873         for (i = 0; i < pavail_ents; i++) {
1874                 unsigned long old_start, old_end;
1875
1876                 old_start = pavail[i].phys_addr;
1877                 old_end = old_start + pavail[i].reg_size;
1878                 while (old_start < old_end) {
1879                         int n;
1880
1881                         for (n = 0; n < pavail_rescan_ents; n++) {
1882                                 unsigned long new_start, new_end;
1883
1884                                 new_start = pavail_rescan[n].phys_addr;
1885                                 new_end = new_start +
1886                                         pavail_rescan[n].reg_size;
1887
1888                                 if (new_start <= old_start &&
1889                                     new_end >= (old_start + PAGE_SIZE)) {
1890                                         set_bit(old_start >> 22,
1891                                                 sparc64_valid_addr_bitmap);
1892                                         goto do_next_page;
1893                                 }
1894                         }
1895
1896                         prom_printf("mem_init: Lost memory in pavail\n");
1897                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1898                                     pavail[i].phys_addr,
1899                                     pavail[i].reg_size);
1900                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1901                                     pavail_rescan[i].phys_addr,
1902                                     pavail_rescan[i].reg_size);
1903                         prom_printf("mem_init: Cannot continue, aborting.\n");
1904                         prom_halt();
1905
1906                 do_next_page:
1907                         old_start += PAGE_SIZE;
1908                 }
1909         }
1910 }
1911
1912 void __init mem_init(void)
1913 {
1914         unsigned long codepages, datapages, initpages;
1915         unsigned long addr, last;
1916         int i;
1917
1918         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1919         i += 1;
1920         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1921         if (sparc64_valid_addr_bitmap == NULL) {
1922                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1923                 prom_halt();
1924         }
1925         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1926
1927         addr = PAGE_OFFSET + kern_base;
1928         last = PAGE_ALIGN(kern_size) + addr;
1929         while (addr < last) {
1930                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1931                 addr += PAGE_SIZE;
1932         }
1933
1934         setup_valid_addr_bitmap_from_pavail();
1935
1936         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1937
1938 #ifdef CONFIG_NEED_MULTIPLE_NODES
1939         for_each_online_node(i) {
1940                 if (NODE_DATA(i)->node_spanned_pages != 0) {
1941                         totalram_pages +=
1942                                 free_all_bootmem_node(NODE_DATA(i));
1943                 }
1944         }
1945 #else
1946         totalram_pages = free_all_bootmem();
1947 #endif
1948
1949         /* We subtract one to account for the mem_map_zero page
1950          * allocated below.
1951          */
1952         totalram_pages -= 1;
1953         num_physpages = totalram_pages;
1954
1955         /*
1956          * Set up the zero page, mark it reserved, so that page count
1957          * is not manipulated when freeing the page from user ptes.
1958          */
1959         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1960         if (mem_map_zero == NULL) {
1961                 prom_printf("paging_init: Cannot alloc zero page.\n");
1962                 prom_halt();
1963         }
1964         SetPageReserved(mem_map_zero);
1965
1966         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1967         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1968         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1969         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1970         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1971         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1972
1973         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1974                nr_free_pages() << (PAGE_SHIFT-10),
1975                codepages << (PAGE_SHIFT-10),
1976                datapages << (PAGE_SHIFT-10), 
1977                initpages << (PAGE_SHIFT-10), 
1978                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1979
1980         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1981                 cheetah_ecache_flush_init();
1982 }
1983
1984 void free_initmem(void)
1985 {
1986         unsigned long addr, initend;
1987         int do_free = 1;
1988
1989         /* If the physical memory maps were trimmed by kernel command
1990          * line options, don't even try freeing this initmem stuff up.
1991          * The kernel image could have been in the trimmed out region
1992          * and if so the freeing below will free invalid page structs.
1993          */
1994         if (cmdline_memory_size)
1995                 do_free = 0;
1996
1997         /*
1998          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1999          */
2000         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2001         initend = (unsigned long)(__init_end) & PAGE_MASK;
2002         for (; addr < initend; addr += PAGE_SIZE) {
2003                 unsigned long page;
2004                 struct page *p;
2005
2006                 page = (addr +
2007                         ((unsigned long) __va(kern_base)) -
2008                         ((unsigned long) KERNBASE));
2009                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2010
2011                 if (do_free) {
2012                         p = virt_to_page(page);
2013
2014                         ClearPageReserved(p);
2015                         init_page_count(p);
2016                         __free_page(p);
2017                         num_physpages++;
2018                         totalram_pages++;
2019                 }
2020         }
2021 }
2022
2023 #ifdef CONFIG_BLK_DEV_INITRD
2024 void free_initrd_mem(unsigned long start, unsigned long end)
2025 {
2026         if (start < end)
2027                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2028         for (; start < end; start += PAGE_SIZE) {
2029                 struct page *p = virt_to_page(start);
2030
2031                 ClearPageReserved(p);
2032                 init_page_count(p);
2033                 __free_page(p);
2034                 num_physpages++;
2035                 totalram_pages++;
2036         }
2037 }
2038 #endif
2039
2040 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2041 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2042 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2043 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2044 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2045 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2046
2047 pgprot_t PAGE_KERNEL __read_mostly;
2048 EXPORT_SYMBOL(PAGE_KERNEL);
2049
2050 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2051 pgprot_t PAGE_COPY __read_mostly;
2052
2053 pgprot_t PAGE_SHARED __read_mostly;
2054 EXPORT_SYMBOL(PAGE_SHARED);
2055
2056 unsigned long pg_iobits __read_mostly;
2057
2058 unsigned long _PAGE_IE __read_mostly;
2059 EXPORT_SYMBOL(_PAGE_IE);
2060
2061 unsigned long _PAGE_E __read_mostly;
2062 EXPORT_SYMBOL(_PAGE_E);
2063
2064 unsigned long _PAGE_CACHE __read_mostly;
2065 EXPORT_SYMBOL(_PAGE_CACHE);
2066
2067 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2068 unsigned long vmemmap_table[VMEMMAP_SIZE];
2069
2070 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2071 {
2072         unsigned long vstart = (unsigned long) start;
2073         unsigned long vend = (unsigned long) (start + nr);
2074         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2075         unsigned long phys_end = (vend - VMEMMAP_BASE);
2076         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2077         unsigned long end = VMEMMAP_ALIGN(phys_end);
2078         unsigned long pte_base;
2079
2080         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2081                     _PAGE_CP_4U | _PAGE_CV_4U |
2082                     _PAGE_P_4U | _PAGE_W_4U);
2083         if (tlb_type == hypervisor)
2084                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2085                             _PAGE_CP_4V | _PAGE_CV_4V |
2086                             _PAGE_P_4V | _PAGE_W_4V);
2087
2088         for (; addr < end; addr += VMEMMAP_CHUNK) {
2089                 unsigned long *vmem_pp =
2090                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2091                 void *block;
2092
2093                 if (!(*vmem_pp & _PAGE_VALID)) {
2094                         block = vmemmap_alloc_block(1UL << 22, node);
2095                         if (!block)
2096                                 return -ENOMEM;
2097
2098                         *vmem_pp = pte_base | __pa(block);
2099
2100                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2101                                "node=%d entry=%lu/%lu\n", start, block, nr,
2102                                node,
2103                                addr >> VMEMMAP_CHUNK_SHIFT,
2104                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2105                 }
2106         }
2107         return 0;
2108 }
2109 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2110
2111 static void prot_init_common(unsigned long page_none,
2112                              unsigned long page_shared,
2113                              unsigned long page_copy,
2114                              unsigned long page_readonly,
2115                              unsigned long page_exec_bit)
2116 {
2117         PAGE_COPY = __pgprot(page_copy);
2118         PAGE_SHARED = __pgprot(page_shared);
2119
2120         protection_map[0x0] = __pgprot(page_none);
2121         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2122         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2123         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2124         protection_map[0x4] = __pgprot(page_readonly);
2125         protection_map[0x5] = __pgprot(page_readonly);
2126         protection_map[0x6] = __pgprot(page_copy);
2127         protection_map[0x7] = __pgprot(page_copy);
2128         protection_map[0x8] = __pgprot(page_none);
2129         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2130         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2131         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2132         protection_map[0xc] = __pgprot(page_readonly);
2133         protection_map[0xd] = __pgprot(page_readonly);
2134         protection_map[0xe] = __pgprot(page_shared);
2135         protection_map[0xf] = __pgprot(page_shared);
2136 }
2137
2138 static void __init sun4u_pgprot_init(void)
2139 {
2140         unsigned long page_none, page_shared, page_copy, page_readonly;
2141         unsigned long page_exec_bit;
2142
2143         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2144                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2145                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2146                                 _PAGE_EXEC_4U);
2147         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2148                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2149                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2150                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2151
2152         _PAGE_IE = _PAGE_IE_4U;
2153         _PAGE_E = _PAGE_E_4U;
2154         _PAGE_CACHE = _PAGE_CACHE_4U;
2155
2156         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2157                      __ACCESS_BITS_4U | _PAGE_E_4U);
2158
2159 #ifdef CONFIG_DEBUG_PAGEALLOC
2160         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2161                 0xfffff80000000000UL;
2162 #else
2163         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2164                 0xfffff80000000000UL;
2165 #endif
2166         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2167                                    _PAGE_P_4U | _PAGE_W_4U);
2168
2169         /* XXX Should use 256MB on Panther. XXX */
2170         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2171
2172         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2173         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2174                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2175                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2176
2177
2178         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2179         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2180                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2181         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2182                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2183         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2184                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2185
2186         page_exec_bit = _PAGE_EXEC_4U;
2187
2188         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2189                          page_exec_bit);
2190 }
2191
2192 static void __init sun4v_pgprot_init(void)
2193 {
2194         unsigned long page_none, page_shared, page_copy, page_readonly;
2195         unsigned long page_exec_bit;
2196
2197         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2198                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2199                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2200                                 _PAGE_EXEC_4V);
2201         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2202
2203         _PAGE_IE = _PAGE_IE_4V;
2204         _PAGE_E = _PAGE_E_4V;
2205         _PAGE_CACHE = _PAGE_CACHE_4V;
2206
2207 #ifdef CONFIG_DEBUG_PAGEALLOC
2208         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2209                 0xfffff80000000000UL;
2210 #else
2211         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2212                 0xfffff80000000000UL;
2213 #endif
2214         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2215                                    _PAGE_P_4V | _PAGE_W_4V);
2216
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2219                 0xfffff80000000000UL;
2220 #else
2221         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2222                 0xfffff80000000000UL;
2223 #endif
2224         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2225                                    _PAGE_P_4V | _PAGE_W_4V);
2226
2227         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2228                      __ACCESS_BITS_4V | _PAGE_E_4V);
2229
2230         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2231         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2232                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2233                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2234                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2235
2236         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2237         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2238                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2239         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2240                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2241         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2242                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2243
2244         page_exec_bit = _PAGE_EXEC_4V;
2245
2246         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2247                          page_exec_bit);
2248 }
2249
2250 unsigned long pte_sz_bits(unsigned long sz)
2251 {
2252         if (tlb_type == hypervisor) {
2253                 switch (sz) {
2254                 case 8 * 1024:
2255                 default:
2256                         return _PAGE_SZ8K_4V;
2257                 case 64 * 1024:
2258                         return _PAGE_SZ64K_4V;
2259                 case 512 * 1024:
2260                         return _PAGE_SZ512K_4V;
2261                 case 4 * 1024 * 1024:
2262                         return _PAGE_SZ4MB_4V;
2263                 };
2264         } else {
2265                 switch (sz) {
2266                 case 8 * 1024:
2267                 default:
2268                         return _PAGE_SZ8K_4U;
2269                 case 64 * 1024:
2270                         return _PAGE_SZ64K_4U;
2271                 case 512 * 1024:
2272                         return _PAGE_SZ512K_4U;
2273                 case 4 * 1024 * 1024:
2274                         return _PAGE_SZ4MB_4U;
2275                 };
2276         }
2277 }
2278
2279 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2280 {
2281         pte_t pte;
2282
2283         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2284         pte_val(pte) |= (((unsigned long)space) << 32);
2285         pte_val(pte) |= pte_sz_bits(page_size);
2286
2287         return pte;
2288 }
2289
2290 static unsigned long kern_large_tte(unsigned long paddr)
2291 {
2292         unsigned long val;
2293
2294         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2295                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2296                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2297         if (tlb_type == hypervisor)
2298                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2299                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2300                        _PAGE_EXEC_4V | _PAGE_W_4V);
2301
2302         return val | paddr;
2303 }
2304
2305 /* If not locked, zap it. */
2306 void __flush_tlb_all(void)
2307 {
2308         unsigned long pstate;
2309         int i;
2310
2311         __asm__ __volatile__("flushw\n\t"
2312                              "rdpr      %%pstate, %0\n\t"
2313                              "wrpr      %0, %1, %%pstate"
2314                              : "=r" (pstate)
2315                              : "i" (PSTATE_IE));
2316         if (tlb_type == hypervisor) {
2317                 sun4v_mmu_demap_all();
2318         } else if (tlb_type == spitfire) {
2319                 for (i = 0; i < 64; i++) {
2320                         /* Spitfire Errata #32 workaround */
2321                         /* NOTE: Always runs on spitfire, so no
2322                          *       cheetah+ page size encodings.
2323                          */
2324                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2325                                              "flush     %%g6"
2326                                              : /* No outputs */
2327                                              : "r" (0),
2328                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2329
2330                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2331                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2332                                                      "membar #Sync"
2333                                                      : /* no outputs */
2334                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2335                                 spitfire_put_dtlb_data(i, 0x0UL);
2336                         }
2337
2338                         /* Spitfire Errata #32 workaround */
2339                         /* NOTE: Always runs on spitfire, so no
2340                          *       cheetah+ page size encodings.
2341                          */
2342                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2343                                              "flush     %%g6"
2344                                              : /* No outputs */
2345                                              : "r" (0),
2346                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2347
2348                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2349                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2350                                                      "membar #Sync"
2351                                                      : /* no outputs */
2352                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2353                                 spitfire_put_itlb_data(i, 0x0UL);
2354                         }
2355                 }
2356         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2357                 cheetah_flush_dtlb_all();
2358                 cheetah_flush_itlb_all();
2359         }
2360         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2361                              : : "r" (pstate));
2362 }