]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sh/mm/consistent.c
sh: Add memory chunks to SH-Mobile UIO devices
[linux-2.6-omap-h63xx.git] / arch / sh / mm / consistent.c
1 /*
2  * arch/sh/mm/consistent.c
3  *
4  * Copyright (C) 2004 - 2007  Paul Mundt
5  *
6  * Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 #include <linux/mm.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma-mapping.h>
15 #include <asm/cacheflush.h>
16 #include <asm/addrspace.h>
17 #include <asm/io.h>
18
19 struct dma_coherent_mem {
20         void            *virt_base;
21         u32             device_base;
22         int             size;
23         int             flags;
24         unsigned long   *bitmap;
25 };
26
27 void *dma_alloc_coherent(struct device *dev, size_t size,
28                            dma_addr_t *dma_handle, gfp_t gfp)
29 {
30         void *ret, *ret_nocache;
31         struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
32         int order = get_order(size);
33
34         if (mem) {
35                 int page = bitmap_find_free_region(mem->bitmap, mem->size,
36                                                      order);
37                 if (page >= 0) {
38                         *dma_handle = mem->device_base + (page << PAGE_SHIFT);
39                         ret = mem->virt_base + (page << PAGE_SHIFT);
40                         memset(ret, 0, size);
41                         return ret;
42                 }
43                 if (mem->flags & DMA_MEMORY_EXCLUSIVE)
44                         return NULL;
45         }
46
47         ret = (void *)__get_free_pages(gfp, order);
48         if (!ret)
49                 return NULL;
50
51         memset(ret, 0, size);
52         /*
53          * Pages from the page allocator may have data present in
54          * cache. So flush the cache before using uncached memory.
55          */
56         dma_cache_sync(dev, ret, size, DMA_BIDIRECTIONAL);
57
58         ret_nocache = ioremap_nocache(virt_to_phys(ret), size);
59         if (!ret_nocache) {
60                 free_pages((unsigned long)ret, order);
61                 return NULL;
62         }
63
64         *dma_handle = virt_to_phys(ret);
65         return ret_nocache;
66 }
67 EXPORT_SYMBOL(dma_alloc_coherent);
68
69 void dma_free_coherent(struct device *dev, size_t size,
70                          void *vaddr, dma_addr_t dma_handle)
71 {
72         struct dma_coherent_mem *mem = dev ? dev->dma_mem : NULL;
73         int order = get_order(size);
74
75         if (mem && vaddr >= mem->virt_base && vaddr < (mem->virt_base + (mem->size << PAGE_SHIFT))) {
76                 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
77
78                 bitmap_release_region(mem->bitmap, page, order);
79         } else {
80                 WARN_ON(irqs_disabled());       /* for portability */
81                 BUG_ON(mem && mem->flags & DMA_MEMORY_EXCLUSIVE);
82                 free_pages((unsigned long)phys_to_virt(dma_handle), order);
83                 iounmap(vaddr);
84         }
85 }
86 EXPORT_SYMBOL(dma_free_coherent);
87
88 int dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
89                                 dma_addr_t device_addr, size_t size, int flags)
90 {
91         void __iomem *mem_base = NULL;
92         int pages = size >> PAGE_SHIFT;
93         int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
94
95         if ((flags & (DMA_MEMORY_MAP | DMA_MEMORY_IO)) == 0)
96                 goto out;
97         if (!size)
98                 goto out;
99         if (dev->dma_mem)
100                 goto out;
101
102         /* FIXME: this routine just ignores DMA_MEMORY_INCLUDES_CHILDREN */
103
104         mem_base = ioremap_nocache(bus_addr, size);
105         if (!mem_base)
106                 goto out;
107
108         dev->dma_mem = kmalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
109         if (!dev->dma_mem)
110                 goto out;
111         dev->dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
112         if (!dev->dma_mem->bitmap)
113                 goto free1_out;
114
115         dev->dma_mem->virt_base = mem_base;
116         dev->dma_mem->device_base = device_addr;
117         dev->dma_mem->size = pages;
118         dev->dma_mem->flags = flags;
119
120         if (flags & DMA_MEMORY_MAP)
121                 return DMA_MEMORY_MAP;
122
123         return DMA_MEMORY_IO;
124
125  free1_out:
126         kfree(dev->dma_mem);
127  out:
128         if (mem_base)
129                 iounmap(mem_base);
130         return 0;
131 }
132 EXPORT_SYMBOL(dma_declare_coherent_memory);
133
134 void dma_release_declared_memory(struct device *dev)
135 {
136         struct dma_coherent_mem *mem = dev->dma_mem;
137
138         if (!mem)
139                 return;
140         dev->dma_mem = NULL;
141         iounmap(mem->virt_base);
142         kfree(mem->bitmap);
143         kfree(mem);
144 }
145 EXPORT_SYMBOL(dma_release_declared_memory);
146
147 void *dma_mark_declared_memory_occupied(struct device *dev,
148                                         dma_addr_t device_addr, size_t size)
149 {
150         struct dma_coherent_mem *mem = dev->dma_mem;
151         int pages = (size + (device_addr & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
152         int pos, err;
153
154         if (!mem)
155                 return ERR_PTR(-EINVAL);
156
157         pos = (device_addr - mem->device_base) >> PAGE_SHIFT;
158         err = bitmap_allocate_region(mem->bitmap, pos, get_order(pages));
159         if (err != 0)
160                 return ERR_PTR(err);
161         return mem->virt_base + (pos << PAGE_SHIFT);
162 }
163 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
164
165 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
166                     enum dma_data_direction direction)
167 {
168 #ifdef CONFIG_CPU_SH5
169         void *p1addr = vaddr;
170 #else
171         void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
172 #endif
173
174         switch (direction) {
175         case DMA_FROM_DEVICE:           /* invalidate only */
176                 __flush_invalidate_region(p1addr, size);
177                 break;
178         case DMA_TO_DEVICE:             /* writeback only */
179                 __flush_wback_region(p1addr, size);
180                 break;
181         case DMA_BIDIRECTIONAL:         /* writeback and invalidate */
182                 __flush_purge_region(p1addr, size);
183                 break;
184         default:
185                 BUG();
186         }
187 }
188 EXPORT_SYMBOL(dma_cache_sync);
189
190 int platform_resource_setup_memory(struct platform_device *pdev,
191                                    char *name, unsigned long memsize)
192 {
193         struct resource *r;
194         dma_addr_t dma_handle;
195         void *buf;
196
197         r = pdev->resource + pdev->num_resources - 1;
198         if (r->flags) {
199                 pr_warning("%s: unable to find empty space for resource\n",
200                         name);
201                 return -EINVAL;
202         }
203
204         buf = dma_alloc_coherent(NULL, memsize, &dma_handle, GFP_KERNEL);
205         if (!buf) {
206                 pr_warning("%s: unable to allocate memory\n", name);
207                 return -ENOMEM;
208         }
209
210         memset(buf, 0, memsize);
211
212         r->flags = IORESOURCE_MEM;
213         r->start = dma_handle;
214         r->end = r->start + memsize - 1;
215         r->name = name;
216         return 0;
217 }