]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/sh/kernel/setup.c
6d0899e890d09595a8f13ef3c748d9a657a00eb4
[linux-2.6-omap-h63xx.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32 #include <asm/page.h>
33 #include <asm/elf.h>
34 #include <asm/sections.h>
35 #include <asm/irq.h>
36 #include <asm/setup.h>
37 #include <asm/clock.h>
38 #include <asm/mmu_context.h>
39
40 /*
41  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
42  * This value will be used at the very early stage of serial setup.
43  * The bigger value means no problem.
44  */
45 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
46         [0] = {
47                 .type                   = CPU_SH_NONE,
48                 .loops_per_jiffy        = 10000000,
49         },
50 };
51 EXPORT_SYMBOL(cpu_data);
52
53 /*
54  * The machine vector. First entry in .machvec.init, or clobbered by
55  * sh_mv= on the command line, prior to .machvec.init teardown.
56  */
57 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
58 EXPORT_SYMBOL(sh_mv);
59
60 #ifdef CONFIG_VT
61 struct screen_info screen_info;
62 #endif
63
64 extern int root_mountflags;
65
66 #define RAMDISK_IMAGE_START_MASK        0x07FF
67 #define RAMDISK_PROMPT_FLAG             0x8000
68 #define RAMDISK_LOAD_FLAG               0x4000
69
70 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
71
72 static struct resource code_resource = {
73         .name = "Kernel code",
74         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
75 };
76
77 static struct resource data_resource = {
78         .name = "Kernel data",
79         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
80 };
81
82 static struct resource bss_resource = {
83         .name   = "Kernel bss",
84         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
85 };
86
87 unsigned long memory_start;
88 EXPORT_SYMBOL(memory_start);
89 unsigned long memory_end = 0;
90 EXPORT_SYMBOL(memory_end);
91
92 static struct resource mem_resources[MAX_NUMNODES];
93
94 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
95
96 static int __init early_parse_mem(char *p)
97 {
98         unsigned long size;
99
100         memory_start = (unsigned long)__va(__MEMORY_START);
101         size = memparse(p, &p);
102
103         if (size > __MEMORY_SIZE) {
104                 static char msg[] __initdata = KERN_ERR
105                         "Using mem= to increase the size of kernel memory "
106                         "is not allowed.\n"
107                         "  Recompile the kernel with the correct value for "
108                         "CONFIG_MEMORY_SIZE.\n";
109                 printk(msg);
110                 return 0;
111         }
112
113         memory_end = memory_start + size;
114
115         return 0;
116 }
117 early_param("mem", early_parse_mem);
118
119 /*
120  * Register fully available low RAM pages with the bootmem allocator.
121  */
122 static void __init register_bootmem_low_pages(void)
123 {
124         unsigned long curr_pfn, last_pfn, pages;
125
126         /*
127          * We are rounding up the start address of usable memory:
128          */
129         curr_pfn = PFN_UP(__MEMORY_START);
130
131         /*
132          * ... and at the end of the usable range downwards:
133          */
134         last_pfn = PFN_DOWN(__pa(memory_end));
135
136         if (last_pfn > max_low_pfn)
137                 last_pfn = max_low_pfn;
138
139         pages = last_pfn - curr_pfn;
140         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
141 }
142
143 #ifdef CONFIG_KEXEC
144 static void __init reserve_crashkernel(void)
145 {
146         unsigned long long free_mem;
147         unsigned long long crash_size, crash_base;
148         int ret;
149
150         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
151
152         ret = parse_crashkernel(boot_command_line, free_mem,
153                         &crash_size, &crash_base);
154         if (ret == 0 && crash_size) {
155                 if (crash_base <= 0) {
156                         printk(KERN_INFO "crashkernel reservation failed - "
157                                         "you have to specify a base address\n");
158                         return;
159                 }
160
161                 if (reserve_bootmem(crash_base, crash_size,
162                                         BOOTMEM_EXCLUSIVE) < 0) {
163                         printk(KERN_INFO "crashkernel reservation failed - "
164                                         "memory is in use\n");
165                         return;
166                 }
167
168                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
169                                 "for crashkernel (System RAM: %ldMB)\n",
170                                 (unsigned long)(crash_size >> 20),
171                                 (unsigned long)(crash_base >> 20),
172                                 (unsigned long)(free_mem >> 20));
173                 crashk_res.start = crash_base;
174                 crashk_res.end   = crash_base + crash_size - 1;
175                 insert_resource(&iomem_resource, &crashk_res);
176         }
177 }
178 #else
179 static inline void __init reserve_crashkernel(void)
180 {}
181 #endif
182
183 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
184                                                 unsigned long end_pfn)
185 {
186         struct resource *res = &mem_resources[nid];
187
188         WARN_ON(res->name); /* max one active range per node for now */
189
190         res->name = "System RAM";
191         res->start = start_pfn << PAGE_SHIFT;
192         res->end = (end_pfn << PAGE_SHIFT) - 1;
193         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194         if (request_resource(&iomem_resource, res)) {
195                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
196                        start_pfn, end_pfn);
197                 return;
198         }
199
200         /*
201          *  We don't know which RAM region contains kernel data,
202          *  so we try it repeatedly and let the resource manager
203          *  test it.
204          */
205         request_resource(res, &code_resource);
206         request_resource(res, &data_resource);
207         request_resource(res, &bss_resource);
208
209         add_active_range(nid, start_pfn, end_pfn);
210 }
211
212 void __init setup_bootmem_allocator(unsigned long free_pfn)
213 {
214         unsigned long bootmap_size;
215
216         /*
217          * Find a proper area for the bootmem bitmap. After this
218          * bootstrap step all allocations (until the page allocator
219          * is intact) must be done via bootmem_alloc().
220          */
221         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
222                                          min_low_pfn, max_low_pfn);
223
224         __add_active_range(0, min_low_pfn, max_low_pfn);
225         register_bootmem_low_pages();
226
227         node_set_online(0);
228
229         /*
230          * Reserve the kernel text and
231          * Reserve the bootmem bitmap. We do this in two steps (first step
232          * was init_bootmem()), because this catches the (definitely buggy)
233          * case of us accidentally initializing the bootmem allocator with
234          * an invalid RAM area.
235          */
236         reserve_bootmem(__MEMORY_START+PAGE_SIZE,
237                 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START,
238                 BOOTMEM_DEFAULT);
239
240         /*
241          * reserve physical page 0 - it's a special BIOS page on many boxes,
242          * enabling clean reboots, SMP operation, laptop functions.
243          */
244         reserve_bootmem(__MEMORY_START, PAGE_SIZE, BOOTMEM_DEFAULT);
245
246         sparse_memory_present_with_active_regions(0);
247
248 #ifdef CONFIG_BLK_DEV_INITRD
249         ROOT_DEV = Root_RAM0;
250
251         if (LOADER_TYPE && INITRD_START) {
252                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
253                         reserve_bootmem(INITRD_START + __MEMORY_START,
254                                         INITRD_SIZE, BOOTMEM_DEFAULT);
255                         initrd_start = INITRD_START + PAGE_OFFSET +
256                                         __MEMORY_START;
257                         initrd_end = initrd_start + INITRD_SIZE;
258                 } else {
259                         printk("initrd extends beyond end of memory "
260                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
261                                     INITRD_START + INITRD_SIZE,
262                                     max_low_pfn << PAGE_SHIFT);
263                         initrd_start = 0;
264                 }
265         }
266 #endif
267
268         reserve_crashkernel();
269 }
270
271 #ifndef CONFIG_NEED_MULTIPLE_NODES
272 static void __init setup_memory(void)
273 {
274         unsigned long start_pfn;
275
276         /*
277          * Partially used pages are not usable - thus
278          * we are rounding upwards:
279          */
280         start_pfn = PFN_UP(__pa(_end));
281         setup_bootmem_allocator(start_pfn);
282 }
283 #else
284 extern void __init setup_memory(void);
285 #endif
286
287 /*
288  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
289  * is_kdump_kernel() to determine if we are booting after a panic. Hence
290  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
291  */
292 #ifdef CONFIG_CRASH_DUMP
293 /* elfcorehdr= specifies the location of elf core header
294  * stored by the crashed kernel.
295  */
296 static int __init parse_elfcorehdr(char *arg)
297 {
298         if (!arg)
299                 return -EINVAL;
300         elfcorehdr_addr = memparse(arg, &arg);
301         return 0;
302 }
303 early_param("elfcorehdr", parse_elfcorehdr);
304 #endif
305
306 void __init setup_arch(char **cmdline_p)
307 {
308         enable_mmu();
309
310         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
311
312         printk(KERN_NOTICE "Boot params:\n"
313                            "... MOUNT_ROOT_RDONLY - %08lx\n"
314                            "... RAMDISK_FLAGS     - %08lx\n"
315                            "... ORIG_ROOT_DEV     - %08lx\n"
316                            "... LOADER_TYPE       - %08lx\n"
317                            "... INITRD_START      - %08lx\n"
318                            "... INITRD_SIZE       - %08lx\n",
319                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
320                            ORIG_ROOT_DEV, LOADER_TYPE,
321                            INITRD_START, INITRD_SIZE);
322
323 #ifdef CONFIG_BLK_DEV_RAM
324         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
325         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
326         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
327 #endif
328
329         if (!MOUNT_ROOT_RDONLY)
330                 root_mountflags &= ~MS_RDONLY;
331         init_mm.start_code = (unsigned long) _text;
332         init_mm.end_code = (unsigned long) _etext;
333         init_mm.end_data = (unsigned long) _edata;
334         init_mm.brk = (unsigned long) _end;
335
336         code_resource.start = virt_to_phys(_text);
337         code_resource.end = virt_to_phys(_etext)-1;
338         data_resource.start = virt_to_phys(_etext);
339         data_resource.end = virt_to_phys(_edata)-1;
340         bss_resource.start = virt_to_phys(__bss_start);
341         bss_resource.end = virt_to_phys(_ebss)-1;
342
343         memory_start = (unsigned long)__va(__MEMORY_START);
344         if (!memory_end)
345                 memory_end = memory_start + __MEMORY_SIZE;
346
347 #ifdef CONFIG_CMDLINE_BOOL
348         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
349 #else
350         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
351 #endif
352
353         /* Save unparsed command line copy for /proc/cmdline */
354         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
355         *cmdline_p = command_line;
356
357         parse_early_param();
358
359         sh_mv_setup();
360
361         /*
362          * Find the highest page frame number we have available
363          */
364         max_pfn = PFN_DOWN(__pa(memory_end));
365
366         /*
367          * Determine low and high memory ranges:
368          */
369         max_low_pfn = max_pfn;
370         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
371
372         nodes_clear(node_online_map);
373
374         /* Setup bootmem with available RAM */
375         setup_memory();
376         sparse_init();
377
378 #ifdef CONFIG_DUMMY_CONSOLE
379         conswitchp = &dummy_con;
380 #endif
381
382         /* Perform the machine specific initialisation */
383         if (likely(sh_mv.mv_setup))
384                 sh_mv.mv_setup(cmdline_p);
385
386         paging_init();
387
388 #ifdef CONFIG_SMP
389         plat_smp_setup();
390 #endif
391 }
392
393 static const char *cpu_name[] = {
394         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
395         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
396         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
397         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
398         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
399         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
400         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
401         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
402         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
403         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
404         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
405         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
406         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
407         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
408         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
409         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
410         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
411         [CPU_SH7366]    = "SH7366",     [CPU_SH_NONE]   = "Unknown"
412 };
413
414 const char *get_cpu_subtype(struct sh_cpuinfo *c)
415 {
416         return cpu_name[c->type];
417 }
418 EXPORT_SYMBOL(get_cpu_subtype);
419
420 #ifdef CONFIG_PROC_FS
421 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
422 static const char *cpu_flags[] = {
423         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
424         "ptea", "llsc", "l2", "op32", NULL
425 };
426
427 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
428 {
429         unsigned long i;
430
431         seq_printf(m, "cpu flags\t:");
432
433         if (!c->flags) {
434                 seq_printf(m, " %s\n", cpu_flags[0]);
435                 return;
436         }
437
438         for (i = 0; cpu_flags[i]; i++)
439                 if ((c->flags & (1 << i)))
440                         seq_printf(m, " %s", cpu_flags[i+1]);
441
442         seq_printf(m, "\n");
443 }
444
445 static void show_cacheinfo(struct seq_file *m, const char *type,
446                            struct cache_info info)
447 {
448         unsigned int cache_size;
449
450         cache_size = info.ways * info.sets * info.linesz;
451
452         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
453                    type, cache_size >> 10, info.ways);
454 }
455
456 /*
457  *      Get CPU information for use by the procfs.
458  */
459 static int show_cpuinfo(struct seq_file *m, void *v)
460 {
461         struct sh_cpuinfo *c = v;
462         unsigned int cpu = c - cpu_data;
463
464         if (!cpu_online(cpu))
465                 return 0;
466
467         if (cpu == 0)
468                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
469
470         seq_printf(m, "processor\t: %d\n", cpu);
471         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
472         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
473         if (c->cut_major == -1)
474                 seq_printf(m, "cut\t\t: unknown\n");
475         else if (c->cut_minor == -1)
476                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
477         else
478                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
479
480         show_cpuflags(m, c);
481
482         seq_printf(m, "cache type\t: ");
483
484         /*
485          * Check for what type of cache we have, we support both the
486          * unified cache on the SH-2 and SH-3, as well as the harvard
487          * style cache on the SH-4.
488          */
489         if (c->icache.flags & SH_CACHE_COMBINED) {
490                 seq_printf(m, "unified\n");
491                 show_cacheinfo(m, "cache", c->icache);
492         } else {
493                 seq_printf(m, "split (harvard)\n");
494                 show_cacheinfo(m, "icache", c->icache);
495                 show_cacheinfo(m, "dcache", c->dcache);
496         }
497
498         /* Optional secondary cache */
499         if (c->flags & CPU_HAS_L2_CACHE)
500                 show_cacheinfo(m, "scache", c->scache);
501
502         seq_printf(m, "bogomips\t: %lu.%02lu\n",
503                      c->loops_per_jiffy/(500000/HZ),
504                      (c->loops_per_jiffy/(5000/HZ)) % 100);
505
506         return 0;
507 }
508
509 static void *c_start(struct seq_file *m, loff_t *pos)
510 {
511         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
512 }
513 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
514 {
515         ++*pos;
516         return c_start(m, pos);
517 }
518 static void c_stop(struct seq_file *m, void *v)
519 {
520 }
521 const struct seq_operations cpuinfo_op = {
522         .start  = c_start,
523         .next   = c_next,
524         .stop   = c_stop,
525         .show   = show_cpuinfo,
526 };
527 #endif /* CONFIG_PROC_FS */
528
529 struct dentry *sh_debugfs_root;
530
531 static int __init sh_debugfs_init(void)
532 {
533         sh_debugfs_root = debugfs_create_dir("sh", NULL);
534         if (IS_ERR(sh_debugfs_root))
535                 return PTR_ERR(sh_debugfs_root);
536
537         return 0;
538 }
539 arch_initcall(sh_debugfs_init);