]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/s390/mm/vmem.c
3ffc0211dc85c68d0758966774a5f7e4e20ff3fe
[linux-2.6-omap-h63xx.git] / arch / s390 / mm / vmem.c
1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17
18 static DEFINE_MUTEX(vmem_mutex);
19
20 struct memory_segment {
21         struct list_head list;
22         unsigned long start;
23         unsigned long size;
24 };
25
26 static LIST_HEAD(mem_segs);
27
28 void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
29                            unsigned long start_pfn)
30 {
31         struct page *start, *end;
32         struct page *map_start, *map_end;
33         int i;
34
35         start = pfn_to_page(start_pfn);
36         end = start + size;
37
38         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
39                 unsigned long cstart, cend;
40
41                 cstart = PFN_DOWN(memory_chunk[i].addr);
42                 cend = cstart + PFN_DOWN(memory_chunk[i].size);
43
44                 map_start = mem_map + cstart;
45                 map_end = mem_map + cend;
46
47                 if (map_start < start)
48                         map_start = start;
49                 if (map_end > end)
50                         map_end = end;
51
52                 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
53                         / sizeof(struct page);
54                 map_end += ((PFN_ALIGN((unsigned long) map_end)
55                              - (unsigned long) map_end)
56                             / sizeof(struct page));
57
58                 if (map_start < map_end)
59                         memmap_init_zone((unsigned long)(map_end - map_start),
60                                          nid, zone, page_to_pfn(map_start),
61                                          MEMMAP_EARLY);
62         }
63 }
64
65 static void __ref *vmem_alloc_pages(unsigned int order)
66 {
67         if (slab_is_available())
68                 return (void *)__get_free_pages(GFP_KERNEL, order);
69         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
70 }
71
72 static inline pud_t *vmem_pud_alloc(void)
73 {
74         pud_t *pud = NULL;
75
76 #ifdef CONFIG_64BIT
77         pud = vmem_alloc_pages(2);
78         if (!pud)
79                 return NULL;
80         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
81 #endif
82         return pud;
83 }
84
85 static inline pmd_t *vmem_pmd_alloc(void)
86 {
87         pmd_t *pmd = NULL;
88
89 #ifdef CONFIG_64BIT
90         pmd = vmem_alloc_pages(2);
91         if (!pmd)
92                 return NULL;
93         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
94 #endif
95         return pmd;
96 }
97
98 static pte_t __init_refok *vmem_pte_alloc(void)
99 {
100         pte_t *pte;
101
102         if (slab_is_available())
103                 pte = (pte_t *) page_table_alloc(&init_mm);
104         else
105                 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
106         if (!pte)
107                 return NULL;
108         clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
109                     PTRS_PER_PTE * sizeof(pte_t));
110         return pte;
111 }
112
113 /*
114  * Add a physical memory range to the 1:1 mapping.
115  */
116 static int vmem_add_range(unsigned long start, unsigned long size)
117 {
118         unsigned long address;
119         pgd_t *pg_dir;
120         pud_t *pu_dir;
121         pmd_t *pm_dir;
122         pte_t *pt_dir;
123         pte_t  pte;
124         int ret = -ENOMEM;
125
126         for (address = start; address < start + size; address += PAGE_SIZE) {
127                 pg_dir = pgd_offset_k(address);
128                 if (pgd_none(*pg_dir)) {
129                         pu_dir = vmem_pud_alloc();
130                         if (!pu_dir)
131                                 goto out;
132                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
133                 }
134
135                 pu_dir = pud_offset(pg_dir, address);
136                 if (pud_none(*pu_dir)) {
137                         pm_dir = vmem_pmd_alloc();
138                         if (!pm_dir)
139                                 goto out;
140                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
141                 }
142
143                 pm_dir = pmd_offset(pu_dir, address);
144                 if (pmd_none(*pm_dir)) {
145                         pt_dir = vmem_pte_alloc();
146                         if (!pt_dir)
147                                 goto out;
148                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
149                 }
150
151                 pt_dir = pte_offset_kernel(pm_dir, address);
152                 pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
153                 *pt_dir = pte;
154         }
155         ret = 0;
156 out:
157         flush_tlb_kernel_range(start, start + size);
158         return ret;
159 }
160
161 /*
162  * Remove a physical memory range from the 1:1 mapping.
163  * Currently only invalidates page table entries.
164  */
165 static void vmem_remove_range(unsigned long start, unsigned long size)
166 {
167         unsigned long address;
168         pgd_t *pg_dir;
169         pud_t *pu_dir;
170         pmd_t *pm_dir;
171         pte_t *pt_dir;
172         pte_t  pte;
173
174         pte_val(pte) = _PAGE_TYPE_EMPTY;
175         for (address = start; address < start + size; address += PAGE_SIZE) {
176                 pg_dir = pgd_offset_k(address);
177                 pu_dir = pud_offset(pg_dir, address);
178                 if (pud_none(*pu_dir))
179                         continue;
180                 pm_dir = pmd_offset(pu_dir, address);
181                 if (pmd_none(*pm_dir))
182                         continue;
183                 pt_dir = pte_offset_kernel(pm_dir, address);
184                 *pt_dir = pte;
185         }
186         flush_tlb_kernel_range(start, start + size);
187 }
188
189 /*
190  * Add a backed mem_map array to the virtual mem_map array.
191  */
192 static int vmem_add_mem_map(unsigned long start, unsigned long size)
193 {
194         unsigned long address, start_addr, end_addr;
195         struct page *map_start, *map_end;
196         pgd_t *pg_dir;
197         pud_t *pu_dir;
198         pmd_t *pm_dir;
199         pte_t *pt_dir;
200         pte_t  pte;
201         int ret = -ENOMEM;
202
203         map_start = VMEM_MAP + PFN_DOWN(start);
204         map_end = VMEM_MAP + PFN_DOWN(start + size);
205
206         start_addr = (unsigned long) map_start & PAGE_MASK;
207         end_addr = PFN_ALIGN((unsigned long) map_end);
208
209         for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
210                 pg_dir = pgd_offset_k(address);
211                 if (pgd_none(*pg_dir)) {
212                         pu_dir = vmem_pud_alloc();
213                         if (!pu_dir)
214                                 goto out;
215                         pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
216                 }
217
218                 pu_dir = pud_offset(pg_dir, address);
219                 if (pud_none(*pu_dir)) {
220                         pm_dir = vmem_pmd_alloc();
221                         if (!pm_dir)
222                                 goto out;
223                         pud_populate_kernel(&init_mm, pu_dir, pm_dir);
224                 }
225
226                 pm_dir = pmd_offset(pu_dir, address);
227                 if (pmd_none(*pm_dir)) {
228                         pt_dir = vmem_pte_alloc();
229                         if (!pt_dir)
230                                 goto out;
231                         pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
232                 }
233
234                 pt_dir = pte_offset_kernel(pm_dir, address);
235                 if (pte_none(*pt_dir)) {
236                         unsigned long new_page;
237
238                         new_page =__pa(vmem_alloc_pages(0));
239                         if (!new_page)
240                                 goto out;
241                         pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
242                         *pt_dir = pte;
243                 }
244         }
245         ret = 0;
246 out:
247         flush_tlb_kernel_range(start_addr, end_addr);
248         return ret;
249 }
250
251 static int vmem_add_mem(unsigned long start, unsigned long size)
252 {
253         int ret;
254
255         ret = vmem_add_mem_map(start, size);
256         if (ret)
257                 return ret;
258         return vmem_add_range(start, size);
259 }
260
261 /*
262  * Add memory segment to the segment list if it doesn't overlap with
263  * an already present segment.
264  */
265 static int insert_memory_segment(struct memory_segment *seg)
266 {
267         struct memory_segment *tmp;
268
269         if (seg->start + seg->size >= VMEM_MAX_PHYS ||
270             seg->start + seg->size < seg->start)
271                 return -ERANGE;
272
273         list_for_each_entry(tmp, &mem_segs, list) {
274                 if (seg->start >= tmp->start + tmp->size)
275                         continue;
276                 if (seg->start + seg->size <= tmp->start)
277                         continue;
278                 return -ENOSPC;
279         }
280         list_add(&seg->list, &mem_segs);
281         return 0;
282 }
283
284 /*
285  * Remove memory segment from the segment list.
286  */
287 static void remove_memory_segment(struct memory_segment *seg)
288 {
289         list_del(&seg->list);
290 }
291
292 static void __remove_shared_memory(struct memory_segment *seg)
293 {
294         remove_memory_segment(seg);
295         vmem_remove_range(seg->start, seg->size);
296 }
297
298 int remove_shared_memory(unsigned long start, unsigned long size)
299 {
300         struct memory_segment *seg;
301         int ret;
302
303         mutex_lock(&vmem_mutex);
304
305         ret = -ENOENT;
306         list_for_each_entry(seg, &mem_segs, list) {
307                 if (seg->start == start && seg->size == size)
308                         break;
309         }
310
311         if (seg->start != start || seg->size != size)
312                 goto out;
313
314         ret = 0;
315         __remove_shared_memory(seg);
316         kfree(seg);
317 out:
318         mutex_unlock(&vmem_mutex);
319         return ret;
320 }
321
322 int add_shared_memory(unsigned long start, unsigned long size)
323 {
324         struct memory_segment *seg;
325         struct page *page;
326         unsigned long pfn, num_pfn, end_pfn;
327         int ret;
328
329         mutex_lock(&vmem_mutex);
330         ret = -ENOMEM;
331         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
332         if (!seg)
333                 goto out;
334         seg->start = start;
335         seg->size = size;
336
337         ret = insert_memory_segment(seg);
338         if (ret)
339                 goto out_free;
340
341         ret = vmem_add_mem(start, size);
342         if (ret)
343                 goto out_remove;
344
345         pfn = PFN_DOWN(start);
346         num_pfn = PFN_DOWN(size);
347         end_pfn = pfn + num_pfn;
348
349         page = pfn_to_page(pfn);
350         memset(page, 0, num_pfn * sizeof(struct page));
351
352         for (; pfn < end_pfn; pfn++) {
353                 page = pfn_to_page(pfn);
354                 init_page_count(page);
355                 reset_page_mapcount(page);
356                 SetPageReserved(page);
357                 INIT_LIST_HEAD(&page->lru);
358         }
359         goto out;
360
361 out_remove:
362         __remove_shared_memory(seg);
363 out_free:
364         kfree(seg);
365 out:
366         mutex_unlock(&vmem_mutex);
367         return ret;
368 }
369
370 /*
371  * map whole physical memory to virtual memory (identity mapping)
372  * we reserve enough space in the vmalloc area for vmemmap to hotplug
373  * additional memory segments.
374  */
375 void __init vmem_map_init(void)
376 {
377         int i;
378
379         INIT_LIST_HEAD(&init_mm.context.crst_list);
380         INIT_LIST_HEAD(&init_mm.context.pgtable_list);
381         init_mm.context.noexec = 0;
382         NODE_DATA(0)->node_mem_map = VMEM_MAP;
383         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
384                 vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
385 }
386
387 /*
388  * Convert memory chunk array to a memory segment list so there is a single
389  * list that contains both r/w memory and shared memory segments.
390  */
391 static int __init vmem_convert_memory_chunk(void)
392 {
393         struct memory_segment *seg;
394         int i;
395
396         mutex_lock(&vmem_mutex);
397         for (i = 0; i < MEMORY_CHUNKS; i++) {
398                 if (!memory_chunk[i].size)
399                         continue;
400                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
401                 if (!seg)
402                         panic("Out of memory...\n");
403                 seg->start = memory_chunk[i].addr;
404                 seg->size = memory_chunk[i].size;
405                 insert_memory_segment(seg);
406         }
407         mutex_unlock(&vmem_mutex);
408         return 0;
409 }
410
411 core_initcall(vmem_convert_memory_chunk);