]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/s390/kernel/smp.c
5a445b1b1217afe018e788bdd6912a368fcece4a
[linux-2.6-omap-h63xx.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47
48 /*
49  * An array with a pointer the lowcore of every CPU.
50  */
51 struct _lowcore *lowcore_ptr[NR_CPUS];
52 EXPORT_SYMBOL(lowcore_ptr);
53
54 cpumask_t cpu_online_map = CPU_MASK_NONE;
55 EXPORT_SYMBOL(cpu_online_map);
56
57 cpumask_t cpu_possible_map = CPU_MASK_ALL;
58 EXPORT_SYMBOL(cpu_possible_map);
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76
77 static void smp_ext_bitcall(int, ec_bit_sig);
78
79 /*
80  * Structure and data for __smp_call_function_map(). This is designed to
81  * minimise static memory requirements. It also looks cleaner.
82  */
83 static DEFINE_SPINLOCK(call_lock);
84
85 struct call_data_struct {
86         void (*func) (void *info);
87         void *info;
88         cpumask_t started;
89         cpumask_t finished;
90         int wait;
91 };
92
93 static struct call_data_struct *call_data;
94
95 /*
96  * 'Call function' interrupt callback
97  */
98 static void do_call_function(void)
99 {
100         void (*func) (void *info) = call_data->func;
101         void *info = call_data->info;
102         int wait = call_data->wait;
103
104         cpu_set(smp_processor_id(), call_data->started);
105         (*func)(info);
106         if (wait)
107                 cpu_set(smp_processor_id(), call_data->finished);;
108 }
109
110 static void __smp_call_function_map(void (*func) (void *info), void *info,
111                                     int nonatomic, int wait, cpumask_t map)
112 {
113         struct call_data_struct data;
114         int cpu, local = 0;
115
116         /*
117          * Can deadlock when interrupts are disabled or if in wrong context.
118          */
119         WARN_ON(irqs_disabled() || in_irq());
120
121         /*
122          * Check for local function call. We have to have the same call order
123          * as in on_each_cpu() because of machine_restart_smp().
124          */
125         if (cpu_isset(smp_processor_id(), map)) {
126                 local = 1;
127                 cpu_clear(smp_processor_id(), map);
128         }
129
130         cpus_and(map, map, cpu_online_map);
131         if (cpus_empty(map))
132                 goto out;
133
134         data.func = func;
135         data.info = info;
136         data.started = CPU_MASK_NONE;
137         data.wait = wait;
138         if (wait)
139                 data.finished = CPU_MASK_NONE;
140
141         spin_lock(&call_lock);
142         call_data = &data;
143
144         for_each_cpu_mask(cpu, map)
145                 smp_ext_bitcall(cpu, ec_call_function);
146
147         /* Wait for response */
148         while (!cpus_equal(map, data.started))
149                 cpu_relax();
150         if (wait)
151                 while (!cpus_equal(map, data.finished))
152                         cpu_relax();
153         spin_unlock(&call_lock);
154 out:
155         if (local) {
156                 local_irq_disable();
157                 func(info);
158                 local_irq_enable();
159         }
160 }
161
162 /*
163  * smp_call_function:
164  * @func: the function to run; this must be fast and non-blocking
165  * @info: an arbitrary pointer to pass to the function
166  * @nonatomic: unused
167  * @wait: if true, wait (atomically) until function has completed on other CPUs
168  *
169  * Run a function on all other CPUs.
170  *
171  * You must not call this function with disabled interrupts, from a
172  * hardware interrupt handler or from a bottom half.
173  */
174 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
175                       int wait)
176 {
177         cpumask_t map;
178
179         preempt_disable();
180         map = cpu_online_map;
181         cpu_clear(smp_processor_id(), map);
182         __smp_call_function_map(func, info, nonatomic, wait, map);
183         preempt_enable();
184         return 0;
185 }
186 EXPORT_SYMBOL(smp_call_function);
187
188 /*
189  * smp_call_function_single:
190  * @cpu: the CPU where func should run
191  * @func: the function to run; this must be fast and non-blocking
192  * @info: an arbitrary pointer to pass to the function
193  * @nonatomic: unused
194  * @wait: if true, wait (atomically) until function has completed on other CPUs
195  *
196  * Run a function on one processor.
197  *
198  * You must not call this function with disabled interrupts, from a
199  * hardware interrupt handler or from a bottom half.
200  */
201 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
202                              int nonatomic, int wait)
203 {
204         preempt_disable();
205         __smp_call_function_map(func, info, nonatomic, wait,
206                                 cpumask_of_cpu(cpu));
207         preempt_enable();
208         return 0;
209 }
210 EXPORT_SYMBOL(smp_call_function_single);
211
212 /**
213  * smp_call_function_mask(): Run a function on a set of other CPUs.
214  * @mask: The set of cpus to run on.  Must not include the current cpu.
215  * @func: The function to run. This must be fast and non-blocking.
216  * @info: An arbitrary pointer to pass to the function.
217  * @wait: If true, wait (atomically) until function has completed on other CPUs.
218  *
219  * Returns 0 on success, else a negative status code.
220  *
221  * If @wait is true, then returns once @func has returned; otherwise
222  * it returns just before the target cpu calls @func.
223  *
224  * You must not call this function with disabled interrupts or from a
225  * hardware interrupt handler or from a bottom half handler.
226  */
227 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
228                            int wait)
229 {
230         preempt_disable();
231         cpu_clear(smp_processor_id(), mask);
232         __smp_call_function_map(func, info, 0, wait, mask);
233         preempt_enable();
234         return 0;
235 }
236 EXPORT_SYMBOL(smp_call_function_mask);
237
238 void smp_send_stop(void)
239 {
240         int cpu, rc;
241
242         /* Disable all interrupts/machine checks */
243         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
244
245         /* write magic number to zero page (absolute 0) */
246         lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
247
248         /* stop all processors */
249         for_each_online_cpu(cpu) {
250                 if (cpu == smp_processor_id())
251                         continue;
252                 do {
253                         rc = signal_processor(cpu, sigp_stop);
254                 } while (rc == sigp_busy);
255
256                 while (!smp_cpu_not_running(cpu))
257                         cpu_relax();
258         }
259 }
260
261 /*
262  * This is the main routine where commands issued by other
263  * cpus are handled.
264  */
265
266 static void do_ext_call_interrupt(__u16 code)
267 {
268         unsigned long bits;
269
270         /*
271          * handle bit signal external calls
272          *
273          * For the ec_schedule signal we have to do nothing. All the work
274          * is done automatically when we return from the interrupt.
275          */
276         bits = xchg(&S390_lowcore.ext_call_fast, 0);
277
278         if (test_bit(ec_call_function, &bits))
279                 do_call_function();
280 }
281
282 /*
283  * Send an external call sigp to another cpu and return without waiting
284  * for its completion.
285  */
286 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
287 {
288         /*
289          * Set signaling bit in lowcore of target cpu and kick it
290          */
291         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
292         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
293                 udelay(10);
294 }
295
296 #ifndef CONFIG_64BIT
297 /*
298  * this function sends a 'purge tlb' signal to another CPU.
299  */
300 void smp_ptlb_callback(void *info)
301 {
302         __tlb_flush_local();
303 }
304
305 void smp_ptlb_all(void)
306 {
307         on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
308 }
309 EXPORT_SYMBOL(smp_ptlb_all);
310 #endif /* ! CONFIG_64BIT */
311
312 /*
313  * this function sends a 'reschedule' IPI to another CPU.
314  * it goes straight through and wastes no time serializing
315  * anything. Worst case is that we lose a reschedule ...
316  */
317 void smp_send_reschedule(int cpu)
318 {
319         smp_ext_bitcall(cpu, ec_schedule);
320 }
321
322 /*
323  * parameter area for the set/clear control bit callbacks
324  */
325 struct ec_creg_mask_parms {
326         unsigned long orvals[16];
327         unsigned long andvals[16];
328 };
329
330 /*
331  * callback for setting/clearing control bits
332  */
333 static void smp_ctl_bit_callback(void *info)
334 {
335         struct ec_creg_mask_parms *pp = info;
336         unsigned long cregs[16];
337         int i;
338
339         __ctl_store(cregs, 0, 15);
340         for (i = 0; i <= 15; i++)
341                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
342         __ctl_load(cregs, 0, 15);
343 }
344
345 /*
346  * Set a bit in a control register of all cpus
347  */
348 void smp_ctl_set_bit(int cr, int bit)
349 {
350         struct ec_creg_mask_parms parms;
351
352         memset(&parms.orvals, 0, sizeof(parms.orvals));
353         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
354         parms.orvals[cr] = 1 << bit;
355         on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
356 }
357 EXPORT_SYMBOL(smp_ctl_set_bit);
358
359 /*
360  * Clear a bit in a control register of all cpus
361  */
362 void smp_ctl_clear_bit(int cr, int bit)
363 {
364         struct ec_creg_mask_parms parms;
365
366         memset(&parms.orvals, 0, sizeof(parms.orvals));
367         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
368         parms.andvals[cr] = ~(1L << bit);
369         on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
370 }
371 EXPORT_SYMBOL(smp_ctl_clear_bit);
372
373 /*
374  * In early ipl state a temp. logically cpu number is needed, so the sigp
375  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
376  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
377  */
378 #define CPU_INIT_NO     1
379
380 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
381
382 /*
383  * zfcpdump_prefix_array holds prefix registers for the following scenario:
384  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
385  * save its prefix registers, since they get lost, when switching from 31 bit
386  * to 64 bit.
387  */
388 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
389         __attribute__((__section__(".data")));
390
391 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
392 {
393         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
394                 return;
395         if (cpu >= NR_CPUS) {
396                 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
397                        "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
398                 return;
399         }
400         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
401         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
402         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
403                sigp_busy)
404                 cpu_relax();
405         memcpy(zfcpdump_save_areas[cpu],
406                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
407                SAVE_AREA_SIZE);
408 #ifdef CONFIG_64BIT
409         /* copy original prefix register */
410         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
411 #endif
412 }
413
414 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
415 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
416
417 #else
418
419 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
420
421 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
422
423 static int cpu_stopped(int cpu)
424 {
425         __u32 status;
426
427         /* Check for stopped state */
428         if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
429             sigp_status_stored) {
430                 if (status & 0x40)
431                         return 1;
432         }
433         return 0;
434 }
435
436 static int cpu_known(int cpu_id)
437 {
438         int cpu;
439
440         for_each_present_cpu(cpu) {
441                 if (__cpu_logical_map[cpu] == cpu_id)
442                         return 1;
443         }
444         return 0;
445 }
446
447 static int smp_rescan_cpus_sigp(cpumask_t avail)
448 {
449         int cpu_id, logical_cpu;
450
451         logical_cpu = first_cpu(avail);
452         if (logical_cpu == NR_CPUS)
453                 return 0;
454         for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
455                 if (cpu_known(cpu_id))
456                         continue;
457                 __cpu_logical_map[logical_cpu] = cpu_id;
458                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
459                 if (!cpu_stopped(logical_cpu))
460                         continue;
461                 cpu_set(logical_cpu, cpu_present_map);
462                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
463                 logical_cpu = next_cpu(logical_cpu, avail);
464                 if (logical_cpu == NR_CPUS)
465                         break;
466         }
467         return 0;
468 }
469
470 static int smp_rescan_cpus_sclp(cpumask_t avail)
471 {
472         struct sclp_cpu_info *info;
473         int cpu_id, logical_cpu, cpu;
474         int rc;
475
476         logical_cpu = first_cpu(avail);
477         if (logical_cpu == NR_CPUS)
478                 return 0;
479         info = kmalloc(sizeof(*info), GFP_KERNEL);
480         if (!info)
481                 return -ENOMEM;
482         rc = sclp_get_cpu_info(info);
483         if (rc)
484                 goto out;
485         for (cpu = 0; cpu < info->combined; cpu++) {
486                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
487                         continue;
488                 cpu_id = info->cpu[cpu].address;
489                 if (cpu_known(cpu_id))
490                         continue;
491                 __cpu_logical_map[logical_cpu] = cpu_id;
492                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
493                 cpu_set(logical_cpu, cpu_present_map);
494                 if (cpu >= info->configured)
495                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
496                 else
497                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
498                 logical_cpu = next_cpu(logical_cpu, avail);
499                 if (logical_cpu == NR_CPUS)
500                         break;
501         }
502 out:
503         kfree(info);
504         return rc;
505 }
506
507 static int smp_rescan_cpus(void)
508 {
509         cpumask_t avail;
510
511         cpus_xor(avail, cpu_possible_map, cpu_present_map);
512         if (smp_use_sigp_detection)
513                 return smp_rescan_cpus_sigp(avail);
514         else
515                 return smp_rescan_cpus_sclp(avail);
516 }
517
518 static void __init smp_detect_cpus(void)
519 {
520         unsigned int cpu, c_cpus, s_cpus;
521         struct sclp_cpu_info *info;
522         u16 boot_cpu_addr, cpu_addr;
523
524         c_cpus = 1;
525         s_cpus = 0;
526         boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
527         info = kmalloc(sizeof(*info), GFP_KERNEL);
528         if (!info)
529                 panic("smp_detect_cpus failed to allocate memory\n");
530         /* Use sigp detection algorithm if sclp doesn't work. */
531         if (sclp_get_cpu_info(info)) {
532                 smp_use_sigp_detection = 1;
533                 for (cpu = 0; cpu <= 65535; cpu++) {
534                         if (cpu == boot_cpu_addr)
535                                 continue;
536                         __cpu_logical_map[CPU_INIT_NO] = cpu;
537                         if (!cpu_stopped(CPU_INIT_NO))
538                                 continue;
539                         smp_get_save_area(c_cpus, cpu);
540                         c_cpus++;
541                 }
542                 goto out;
543         }
544
545         if (info->has_cpu_type) {
546                 for (cpu = 0; cpu < info->combined; cpu++) {
547                         if (info->cpu[cpu].address == boot_cpu_addr) {
548                                 smp_cpu_type = info->cpu[cpu].type;
549                                 break;
550                         }
551                 }
552         }
553
554         for (cpu = 0; cpu < info->combined; cpu++) {
555                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
556                         continue;
557                 cpu_addr = info->cpu[cpu].address;
558                 if (cpu_addr == boot_cpu_addr)
559                         continue;
560                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
561                 if (!cpu_stopped(CPU_INIT_NO)) {
562                         s_cpus++;
563                         continue;
564                 }
565                 smp_get_save_area(c_cpus, cpu_addr);
566                 c_cpus++;
567         }
568 out:
569         kfree(info);
570         printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
571         get_online_cpus();
572         smp_rescan_cpus();
573         put_online_cpus();
574 }
575
576 /*
577  *      Activate a secondary processor.
578  */
579 int __cpuinit start_secondary(void *cpuvoid)
580 {
581         /* Setup the cpu */
582         cpu_init();
583         preempt_disable();
584         /* Enable TOD clock interrupts on the secondary cpu. */
585         init_cpu_timer();
586 #ifdef CONFIG_VIRT_TIMER
587         /* Enable cpu timer interrupts on the secondary cpu. */
588         init_cpu_vtimer();
589 #endif
590         /* Enable pfault pseudo page faults on this cpu. */
591         pfault_init();
592
593         /* Mark this cpu as online */
594         cpu_set(smp_processor_id(), cpu_online_map);
595         /* Switch on interrupts */
596         local_irq_enable();
597         /* Print info about this processor */
598         print_cpu_info(&S390_lowcore.cpu_data);
599         /* cpu_idle will call schedule for us */
600         cpu_idle();
601         return 0;
602 }
603
604 static void __init smp_create_idle(unsigned int cpu)
605 {
606         struct task_struct *p;
607
608         /*
609          *  don't care about the psw and regs settings since we'll never
610          *  reschedule the forked task.
611          */
612         p = fork_idle(cpu);
613         if (IS_ERR(p))
614                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
615         current_set[cpu] = p;
616         spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
617 }
618
619 static int __cpuinit smp_alloc_lowcore(int cpu)
620 {
621         unsigned long async_stack, panic_stack;
622         struct _lowcore *lowcore;
623         int lc_order;
624
625         lc_order = sizeof(long) == 8 ? 1 : 0;
626         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
627         if (!lowcore)
628                 return -ENOMEM;
629         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
630         panic_stack = __get_free_page(GFP_KERNEL);
631         if (!panic_stack || !async_stack)
632                 goto out;
633         memcpy(lowcore, &S390_lowcore, 512);
634         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
635         lowcore->async_stack = async_stack + ASYNC_SIZE;
636         lowcore->panic_stack = panic_stack + PAGE_SIZE;
637
638 #ifndef CONFIG_64BIT
639         if (MACHINE_HAS_IEEE) {
640                 unsigned long save_area;
641
642                 save_area = get_zeroed_page(GFP_KERNEL);
643                 if (!save_area)
644                         goto out_save_area;
645                 lowcore->extended_save_area_addr = (u32) save_area;
646         }
647 #endif
648         lowcore_ptr[cpu] = lowcore;
649         return 0;
650
651 #ifndef CONFIG_64BIT
652 out_save_area:
653         free_page(panic_stack);
654 #endif
655 out:
656         free_pages(async_stack, ASYNC_ORDER);
657         free_pages((unsigned long) lowcore, lc_order);
658         return -ENOMEM;
659 }
660
661 #ifdef CONFIG_HOTPLUG_CPU
662 static void smp_free_lowcore(int cpu)
663 {
664         struct _lowcore *lowcore;
665         int lc_order;
666
667         lc_order = sizeof(long) == 8 ? 1 : 0;
668         lowcore = lowcore_ptr[cpu];
669 #ifndef CONFIG_64BIT
670         if (MACHINE_HAS_IEEE)
671                 free_page((unsigned long) lowcore->extended_save_area_addr);
672 #endif
673         free_page(lowcore->panic_stack - PAGE_SIZE);
674         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
675         free_pages((unsigned long) lowcore, lc_order);
676         lowcore_ptr[cpu] = NULL;
677 }
678 #endif /* CONFIG_HOTPLUG_CPU */
679
680 /* Upping and downing of CPUs */
681 int __cpuinit __cpu_up(unsigned int cpu)
682 {
683         struct task_struct *idle;
684         struct _lowcore *cpu_lowcore;
685         struct stack_frame *sf;
686         sigp_ccode ccode;
687
688         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
689                 return -EIO;
690         if (smp_alloc_lowcore(cpu))
691                 return -ENOMEM;
692
693         ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
694                                    cpu, sigp_set_prefix);
695         if (ccode) {
696                 printk("sigp_set_prefix failed for cpu %d "
697                        "with condition code %d\n",
698                        (int) cpu, (int) ccode);
699                 return -EIO;
700         }
701
702         idle = current_set[cpu];
703         cpu_lowcore = lowcore_ptr[cpu];
704         cpu_lowcore->kernel_stack = (unsigned long)
705                 task_stack_page(idle) + THREAD_SIZE;
706         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
707         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
708                                      - sizeof(struct pt_regs)
709                                      - sizeof(struct stack_frame));
710         memset(sf, 0, sizeof(struct stack_frame));
711         sf->gprs[9] = (unsigned long) sf;
712         cpu_lowcore->save_area[15] = (unsigned long) sf;
713         __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
714         asm volatile(
715                 "       stam    0,15,0(%0)"
716                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
717         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
718         cpu_lowcore->current_task = (unsigned long) idle;
719         cpu_lowcore->cpu_data.cpu_nr = cpu;
720         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
721         cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
722         eieio();
723
724         while (signal_processor(cpu, sigp_restart) == sigp_busy)
725                 udelay(10);
726
727         while (!cpu_online(cpu))
728                 cpu_relax();
729         return 0;
730 }
731
732 static int __init setup_possible_cpus(char *s)
733 {
734         int pcpus, cpu;
735
736         pcpus = simple_strtoul(s, NULL, 0);
737         cpu_possible_map = cpumask_of_cpu(0);
738         for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
739                 cpu_set(cpu, cpu_possible_map);
740         return 0;
741 }
742 early_param("possible_cpus", setup_possible_cpus);
743
744 #ifdef CONFIG_HOTPLUG_CPU
745
746 int __cpu_disable(void)
747 {
748         struct ec_creg_mask_parms cr_parms;
749         int cpu = smp_processor_id();
750
751         cpu_clear(cpu, cpu_online_map);
752
753         /* Disable pfault pseudo page faults on this cpu. */
754         pfault_fini();
755
756         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
757         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
758
759         /* disable all external interrupts */
760         cr_parms.orvals[0] = 0;
761         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
762                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
763         /* disable all I/O interrupts */
764         cr_parms.orvals[6] = 0;
765         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
766                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
767         /* disable most machine checks */
768         cr_parms.orvals[14] = 0;
769         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
770                                  1 << 25 | 1 << 24);
771
772         smp_ctl_bit_callback(&cr_parms);
773
774         return 0;
775 }
776
777 void __cpu_die(unsigned int cpu)
778 {
779         /* Wait until target cpu is down */
780         while (!smp_cpu_not_running(cpu))
781                 cpu_relax();
782         smp_free_lowcore(cpu);
783         printk(KERN_INFO "Processor %d spun down\n", cpu);
784 }
785
786 void cpu_die(void)
787 {
788         idle_task_exit();
789         signal_processor(smp_processor_id(), sigp_stop);
790         BUG();
791         for (;;);
792 }
793
794 #endif /* CONFIG_HOTPLUG_CPU */
795
796 void __init smp_prepare_cpus(unsigned int max_cpus)
797 {
798 #ifndef CONFIG_64BIT
799         unsigned long save_area = 0;
800 #endif
801         unsigned long async_stack, panic_stack;
802         struct _lowcore *lowcore;
803         unsigned int cpu;
804         int lc_order;
805
806         smp_detect_cpus();
807
808         /* request the 0x1201 emergency signal external interrupt */
809         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
810                 panic("Couldn't request external interrupt 0x1201");
811         print_cpu_info(&S390_lowcore.cpu_data);
812
813         /* Reallocate current lowcore, but keep its contents. */
814         lc_order = sizeof(long) == 8 ? 1 : 0;
815         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
816         panic_stack = __get_free_page(GFP_KERNEL);
817         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
818 #ifndef CONFIG_64BIT
819         if (MACHINE_HAS_IEEE)
820                 save_area = get_zeroed_page(GFP_KERNEL);
821 #endif
822         local_irq_disable();
823         local_mcck_disable();
824         lowcore_ptr[smp_processor_id()] = lowcore;
825         *lowcore = S390_lowcore;
826         lowcore->panic_stack = panic_stack + PAGE_SIZE;
827         lowcore->async_stack = async_stack + ASYNC_SIZE;
828 #ifndef CONFIG_64BIT
829         if (MACHINE_HAS_IEEE)
830                 lowcore->extended_save_area_addr = (u32) save_area;
831 #endif
832         set_prefix((u32)(unsigned long) lowcore);
833         local_mcck_enable();
834         local_irq_enable();
835         for_each_possible_cpu(cpu)
836                 if (cpu != smp_processor_id())
837                         smp_create_idle(cpu);
838 }
839
840 void __init smp_prepare_boot_cpu(void)
841 {
842         BUG_ON(smp_processor_id() != 0);
843
844         current_thread_info()->cpu = 0;
845         cpu_set(0, cpu_present_map);
846         cpu_set(0, cpu_online_map);
847         S390_lowcore.percpu_offset = __per_cpu_offset[0];
848         current_set[0] = current;
849         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
850         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
851         spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
852 }
853
854 void __init smp_cpus_done(unsigned int max_cpus)
855 {
856 }
857
858 /*
859  * the frequency of the profiling timer can be changed
860  * by writing a multiplier value into /proc/profile.
861  *
862  * usually you want to run this on all CPUs ;)
863  */
864 int setup_profiling_timer(unsigned int multiplier)
865 {
866         return 0;
867 }
868
869 #ifdef CONFIG_HOTPLUG_CPU
870 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
871 {
872         ssize_t count;
873
874         mutex_lock(&smp_cpu_state_mutex);
875         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
876         mutex_unlock(&smp_cpu_state_mutex);
877         return count;
878 }
879
880 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
881                                    size_t count)
882 {
883         int cpu = dev->id;
884         int val, rc;
885         char delim;
886
887         if (sscanf(buf, "%d %c", &val, &delim) != 1)
888                 return -EINVAL;
889         if (val != 0 && val != 1)
890                 return -EINVAL;
891
892         mutex_lock(&smp_cpu_state_mutex);
893         get_online_cpus();
894         rc = -EBUSY;
895         if (cpu_online(cpu))
896                 goto out;
897         rc = 0;
898         switch (val) {
899         case 0:
900                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
901                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
902                         if (!rc) {
903                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
904                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
905                         }
906                 }
907                 break;
908         case 1:
909                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
910                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
911                         if (!rc) {
912                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
913                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
914                         }
915                 }
916                 break;
917         default:
918                 break;
919         }
920 out:
921         put_online_cpus();
922         mutex_unlock(&smp_cpu_state_mutex);
923         return rc ? rc : count;
924 }
925 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
926 #endif /* CONFIG_HOTPLUG_CPU */
927
928 static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf)
929 {
930         int cpu = dev->id;
931         ssize_t count;
932
933         mutex_lock(&smp_cpu_state_mutex);
934         switch (smp_cpu_polarization[cpu]) {
935         case POLARIZATION_HRZ:
936                 count = sprintf(buf, "horizontal\n");
937                 break;
938         case POLARIZATION_VL:
939                 count = sprintf(buf, "vertical:low\n");
940                 break;
941         case POLARIZATION_VM:
942                 count = sprintf(buf, "vertical:medium\n");
943                 break;
944         case POLARIZATION_VH:
945                 count = sprintf(buf, "vertical:high\n");
946                 break;
947         default:
948                 count = sprintf(buf, "unknown\n");
949                 break;
950         }
951         mutex_unlock(&smp_cpu_state_mutex);
952         return count;
953 }
954 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
955
956 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
957 {
958         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
959 }
960 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
961
962
963 static struct attribute *cpu_common_attrs[] = {
964 #ifdef CONFIG_HOTPLUG_CPU
965         &attr_configure.attr,
966 #endif
967         &attr_address.attr,
968         &attr_polarization.attr,
969         NULL,
970 };
971
972 static struct attribute_group cpu_common_attr_group = {
973         .attrs = cpu_common_attrs,
974 };
975
976 static ssize_t show_capability(struct sys_device *dev, char *buf)
977 {
978         unsigned int capability;
979         int rc;
980
981         rc = get_cpu_capability(&capability);
982         if (rc)
983                 return rc;
984         return sprintf(buf, "%u\n", capability);
985 }
986 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
987
988 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
989 {
990         struct s390_idle_data *idle;
991         unsigned long long idle_count;
992
993         idle = &per_cpu(s390_idle, dev->id);
994         spin_lock_irq(&idle->lock);
995         idle_count = idle->idle_count;
996         spin_unlock_irq(&idle->lock);
997         return sprintf(buf, "%llu\n", idle_count);
998 }
999 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1000
1001 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
1002 {
1003         struct s390_idle_data *idle;
1004         unsigned long long new_time;
1005
1006         idle = &per_cpu(s390_idle, dev->id);
1007         spin_lock_irq(&idle->lock);
1008         if (idle->in_idle) {
1009                 new_time = get_clock();
1010                 idle->idle_time += new_time - idle->idle_enter;
1011                 idle->idle_enter = new_time;
1012         }
1013         new_time = idle->idle_time;
1014         spin_unlock_irq(&idle->lock);
1015         return sprintf(buf, "%llu\n", new_time >> 12);
1016 }
1017 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1018
1019 static struct attribute *cpu_online_attrs[] = {
1020         &attr_capability.attr,
1021         &attr_idle_count.attr,
1022         &attr_idle_time_us.attr,
1023         NULL,
1024 };
1025
1026 static struct attribute_group cpu_online_attr_group = {
1027         .attrs = cpu_online_attrs,
1028 };
1029
1030 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1031                                     unsigned long action, void *hcpu)
1032 {
1033         unsigned int cpu = (unsigned int)(long)hcpu;
1034         struct cpu *c = &per_cpu(cpu_devices, cpu);
1035         struct sys_device *s = &c->sysdev;
1036         struct s390_idle_data *idle;
1037
1038         switch (action) {
1039         case CPU_ONLINE:
1040         case CPU_ONLINE_FROZEN:
1041                 idle = &per_cpu(s390_idle, cpu);
1042                 spin_lock_irq(&idle->lock);
1043                 idle->idle_enter = 0;
1044                 idle->idle_time = 0;
1045                 idle->idle_count = 0;
1046                 spin_unlock_irq(&idle->lock);
1047                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1048                         return NOTIFY_BAD;
1049                 break;
1050         case CPU_DEAD:
1051         case CPU_DEAD_FROZEN:
1052                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1053                 break;
1054         }
1055         return NOTIFY_OK;
1056 }
1057
1058 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1059         .notifier_call = smp_cpu_notify,
1060 };
1061
1062 static int __devinit smp_add_present_cpu(int cpu)
1063 {
1064         struct cpu *c = &per_cpu(cpu_devices, cpu);
1065         struct sys_device *s = &c->sysdev;
1066         int rc;
1067
1068         c->hotpluggable = 1;
1069         rc = register_cpu(c, cpu);
1070         if (rc)
1071                 goto out;
1072         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1073         if (rc)
1074                 goto out_cpu;
1075         if (!cpu_online(cpu))
1076                 goto out;
1077         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1078         if (!rc)
1079                 return 0;
1080         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1081 out_cpu:
1082 #ifdef CONFIG_HOTPLUG_CPU
1083         unregister_cpu(c);
1084 #endif
1085 out:
1086         return rc;
1087 }
1088
1089 #ifdef CONFIG_HOTPLUG_CPU
1090 static ssize_t __ref rescan_store(struct sys_device *dev,
1091                                   const char *buf, size_t count)
1092 {
1093         cpumask_t newcpus;
1094         int cpu;
1095         int rc;
1096
1097         mutex_lock(&smp_cpu_state_mutex);
1098         get_online_cpus();
1099         newcpus = cpu_present_map;
1100         rc = smp_rescan_cpus();
1101         if (rc)
1102                 goto out;
1103         cpus_andnot(newcpus, cpu_present_map, newcpus);
1104         for_each_cpu_mask(cpu, newcpus) {
1105                 rc = smp_add_present_cpu(cpu);
1106                 if (rc)
1107                         cpu_clear(cpu, cpu_present_map);
1108         }
1109         rc = 0;
1110 out:
1111         put_online_cpus();
1112         mutex_unlock(&smp_cpu_state_mutex);
1113         if (!cpus_empty(newcpus))
1114                 topology_schedule_update();
1115         return rc ? rc : count;
1116 }
1117 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1118 #endif /* CONFIG_HOTPLUG_CPU */
1119
1120 static ssize_t dispatching_show(struct sys_device *dev, char *buf)
1121 {
1122         ssize_t count;
1123
1124         mutex_lock(&smp_cpu_state_mutex);
1125         count = sprintf(buf, "%d\n", cpu_management);
1126         mutex_unlock(&smp_cpu_state_mutex);
1127         return count;
1128 }
1129
1130 static ssize_t dispatching_store(struct sys_device *dev, const char *buf,
1131                                  size_t count)
1132 {
1133         int val, rc;
1134         char delim;
1135
1136         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1137                 return -EINVAL;
1138         if (val != 0 && val != 1)
1139                 return -EINVAL;
1140         rc = 0;
1141         mutex_lock(&smp_cpu_state_mutex);
1142         get_online_cpus();
1143         if (cpu_management == val)
1144                 goto out;
1145         rc = topology_set_cpu_management(val);
1146         if (!rc)
1147                 cpu_management = val;
1148 out:
1149         put_online_cpus();
1150         mutex_unlock(&smp_cpu_state_mutex);
1151         return rc ? rc : count;
1152 }
1153 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1154
1155 static int __init topology_init(void)
1156 {
1157         int cpu;
1158         int rc;
1159
1160         register_cpu_notifier(&smp_cpu_nb);
1161
1162 #ifdef CONFIG_HOTPLUG_CPU
1163         rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1164                                &attr_rescan.attr);
1165         if (rc)
1166                 return rc;
1167 #endif
1168         rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1169                                &attr_dispatching.attr);
1170         if (rc)
1171                 return rc;
1172         for_each_present_cpu(cpu) {
1173                 rc = smp_add_present_cpu(cpu);
1174                 if (rc)
1175                         return rc;
1176         }
1177         return 0;
1178 }
1179 subsys_initcall(topology_init);