]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/kernel/prom.c
fddc9c13bff50b3328e215ab2e8fe83d6d21a004
[linux-2.6-omap-h63xx.git] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60 struct pci_reg_property {
61         struct pci_address addr;
62         u32 size_hi;
63         u32 size_lo;
64 };
65
66 struct isa_reg_property {
67         u32 space;
68         u32 address;
69         u32 size;
70 };
71
72
73 typedef int interpret_func(struct device_node *, unsigned long *,
74                            int, int, int);
75
76 static int __initdata dt_root_addr_cells;
77 static int __initdata dt_root_size_cells;
78
79 #ifdef CONFIG_PPC64
80 static int __initdata iommu_is_off;
81 int __initdata iommu_force_on;
82 unsigned long tce_alloc_start, tce_alloc_end;
83 #endif
84
85 typedef u32 cell_t;
86
87 #if 0
88 static struct boot_param_header *initial_boot_params __initdata;
89 #else
90 struct boot_param_header *initial_boot_params;
91 #endif
92
93 static struct device_node *allnodes = NULL;
94
95 /* use when traversing tree through the allnext, child, sibling,
96  * or parent members of struct device_node.
97  */
98 static DEFINE_RWLOCK(devtree_lock);
99
100 /* export that to outside world */
101 struct device_node *of_chosen;
102
103 struct device_node *dflt_interrupt_controller;
104 int num_interrupt_controllers;
105
106 /*
107  * Wrapper for allocating memory for various data that needs to be
108  * attached to device nodes as they are processed at boot or when
109  * added to the device tree later (e.g. DLPAR).  At boot there is
110  * already a region reserved so we just increment *mem_start by size;
111  * otherwise we call kmalloc.
112  */
113 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
114 {
115         unsigned long tmp;
116
117         if (!mem_start)
118                 return kmalloc(size, GFP_KERNEL);
119
120         tmp = *mem_start;
121         *mem_start += size;
122         return (void *)tmp;
123 }
124
125 /*
126  * Find the device_node with a given phandle.
127  */
128 static struct device_node * find_phandle(phandle ph)
129 {
130         struct device_node *np;
131
132         for (np = allnodes; np != 0; np = np->allnext)
133                 if (np->linux_phandle == ph)
134                         return np;
135         return NULL;
136 }
137
138 /*
139  * Find the interrupt parent of a node.
140  */
141 static struct device_node * __devinit intr_parent(struct device_node *p)
142 {
143         phandle *parp;
144
145         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
146         if (parp == NULL)
147                 return p->parent;
148         p = find_phandle(*parp);
149         if (p != NULL)
150                 return p;
151         /*
152          * On a powermac booted with BootX, we don't get to know the
153          * phandles for any nodes, so find_phandle will return NULL.
154          * Fortunately these machines only have one interrupt controller
155          * so there isn't in fact any ambiguity.  -- paulus
156          */
157         if (num_interrupt_controllers == 1)
158                 p = dflt_interrupt_controller;
159         return p;
160 }
161
162 /*
163  * Find out the size of each entry of the interrupts property
164  * for a node.
165  */
166 int __devinit prom_n_intr_cells(struct device_node *np)
167 {
168         struct device_node *p;
169         unsigned int *icp;
170
171         for (p = np; (p = intr_parent(p)) != NULL; ) {
172                 icp = (unsigned int *)
173                         get_property(p, "#interrupt-cells", NULL);
174                 if (icp != NULL)
175                         return *icp;
176                 if (get_property(p, "interrupt-controller", NULL) != NULL
177                     || get_property(p, "interrupt-map", NULL) != NULL) {
178                         printk("oops, node %s doesn't have #interrupt-cells\n",
179                                p->full_name);
180                         return 1;
181                 }
182         }
183 #ifdef DEBUG_IRQ
184         printk("prom_n_intr_cells failed for %s\n", np->full_name);
185 #endif
186         return 1;
187 }
188
189 /*
190  * Map an interrupt from a device up to the platform interrupt
191  * descriptor.
192  */
193 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
194                                    struct device_node *np, unsigned int *ints,
195                                    int nintrc)
196 {
197         struct device_node *p, *ipar;
198         unsigned int *imap, *imask, *ip;
199         int i, imaplen, match;
200         int newintrc = 0, newaddrc = 0;
201         unsigned int *reg;
202         int naddrc;
203
204         reg = (unsigned int *) get_property(np, "reg", NULL);
205         naddrc = prom_n_addr_cells(np);
206         p = intr_parent(np);
207         while (p != NULL) {
208                 if (get_property(p, "interrupt-controller", NULL) != NULL)
209                         /* this node is an interrupt controller, stop here */
210                         break;
211                 imap = (unsigned int *)
212                         get_property(p, "interrupt-map", &imaplen);
213                 if (imap == NULL) {
214                         p = intr_parent(p);
215                         continue;
216                 }
217                 imask = (unsigned int *)
218                         get_property(p, "interrupt-map-mask", NULL);
219                 if (imask == NULL) {
220                         printk("oops, %s has interrupt-map but no mask\n",
221                                p->full_name);
222                         return 0;
223                 }
224                 imaplen /= sizeof(unsigned int);
225                 match = 0;
226                 ipar = NULL;
227                 while (imaplen > 0 && !match) {
228                         /* check the child-interrupt field */
229                         match = 1;
230                         for (i = 0; i < naddrc && match; ++i)
231                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
232                         for (; i < naddrc + nintrc && match; ++i)
233                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
234                         imap += naddrc + nintrc;
235                         imaplen -= naddrc + nintrc;
236                         /* grab the interrupt parent */
237                         ipar = find_phandle((phandle) *imap++);
238                         --imaplen;
239                         if (ipar == NULL && num_interrupt_controllers == 1)
240                                 /* cope with BootX not giving us phandles */
241                                 ipar = dflt_interrupt_controller;
242                         if (ipar == NULL) {
243                                 printk("oops, no int parent %x in map of %s\n",
244                                        imap[-1], p->full_name);
245                                 return 0;
246                         }
247                         /* find the parent's # addr and intr cells */
248                         ip = (unsigned int *)
249                                 get_property(ipar, "#interrupt-cells", NULL);
250                         if (ip == NULL) {
251                                 printk("oops, no #interrupt-cells on %s\n",
252                                        ipar->full_name);
253                                 return 0;
254                         }
255                         newintrc = *ip;
256                         ip = (unsigned int *)
257                                 get_property(ipar, "#address-cells", NULL);
258                         newaddrc = (ip == NULL)? 0: *ip;
259                         imap += newaddrc + newintrc;
260                         imaplen -= newaddrc + newintrc;
261                 }
262                 if (imaplen < 0) {
263                         printk("oops, error decoding int-map on %s, len=%d\n",
264                                p->full_name, imaplen);
265                         return 0;
266                 }
267                 if (!match) {
268 #ifdef DEBUG_IRQ
269                         printk("oops, no match in %s int-map for %s\n",
270                                p->full_name, np->full_name);
271 #endif
272                         return 0;
273                 }
274                 p = ipar;
275                 naddrc = newaddrc;
276                 nintrc = newintrc;
277                 ints = imap - nintrc;
278                 reg = ints - naddrc;
279         }
280         if (p == NULL) {
281 #ifdef DEBUG_IRQ
282                 printk("hmmm, int tree for %s doesn't have ctrler\n",
283                        np->full_name);
284 #endif
285                 return 0;
286         }
287         *irq = ints;
288         *ictrler = p;
289         return nintrc;
290 }
291
292 static unsigned char map_isa_senses[4] = {
293         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
294         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
295         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
296         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
297 };
298
299 static unsigned char map_mpic_senses[4] = {
300         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
301         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
302         /* 2 seems to be used for the 8259 cascade... */
303         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
304         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
305 };
306
307 static int __devinit finish_node_interrupts(struct device_node *np,
308                                             unsigned long *mem_start,
309                                             int measure_only)
310 {
311         unsigned int *ints;
312         int intlen, intrcells, intrcount;
313         int i, j, n, sense;
314         unsigned int *irq, virq;
315         struct device_node *ic;
316
317         if (num_interrupt_controllers == 0) {
318                 /*
319                  * Old machines just have a list of interrupt numbers
320                  * and no interrupt-controller nodes.
321                  */
322                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
323                                                      &intlen);
324                 /* XXX old interpret_pci_props looked in parent too */
325                 /* XXX old interpret_macio_props looked for interrupts
326                    before AAPL,interrupts */
327                 if (ints == NULL)
328                         ints = (unsigned int *) get_property(np, "interrupts",
329                                                              &intlen);
330                 if (ints == NULL)
331                         return 0;
332
333                 np->n_intrs = intlen / sizeof(unsigned int);
334                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
335                                        mem_start);
336                 if (!np->intrs)
337                         return -ENOMEM;
338                 if (measure_only)
339                         return 0;
340
341                 for (i = 0; i < np->n_intrs; ++i) {
342                         np->intrs[i].line = *ints++;
343                         np->intrs[i].sense = IRQ_SENSE_LEVEL
344                                 | IRQ_POLARITY_NEGATIVE;
345                 }
346                 return 0;
347         }
348
349         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
350         if (ints == NULL)
351                 return 0;
352         intrcells = prom_n_intr_cells(np);
353         intlen /= intrcells * sizeof(unsigned int);
354
355         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
356         if (!np->intrs)
357                 return -ENOMEM;
358
359         if (measure_only)
360                 return 0;
361
362         intrcount = 0;
363         for (i = 0; i < intlen; ++i, ints += intrcells) {
364                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
365                 if (n <= 0)
366                         continue;
367
368                 /* don't map IRQ numbers under a cascaded 8259 controller */
369                 if (ic && device_is_compatible(ic, "chrp,iic")) {
370                         np->intrs[intrcount].line = irq[0];
371                         sense = (n > 1)? (irq[1] & 3): 3;
372                         np->intrs[intrcount].sense = map_isa_senses[sense];
373                 } else {
374                         virq = virt_irq_create_mapping(irq[0]);
375 #ifdef CONFIG_PPC64
376                         if (virq == NO_IRQ) {
377                                 printk(KERN_CRIT "Could not allocate interrupt"
378                                        " number for %s\n", np->full_name);
379                                 continue;
380                         }
381 #endif
382                         np->intrs[intrcount].line = irq_offset_up(virq);
383                         sense = (n > 1)? (irq[1] & 3): 1;
384                         np->intrs[intrcount].sense = map_mpic_senses[sense];
385                 }
386
387 #ifdef CONFIG_PPC64
388                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
389                 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
390                         char *name = get_property(ic->parent, "name", NULL);
391                         if (name && !strcmp(name, "u3"))
392                                 np->intrs[intrcount].line += 128;
393                         else if (!(name && !strcmp(name, "mac-io")))
394                                 /* ignore other cascaded controllers, such as
395                                    the k2-sata-root */
396                                 break;
397                 }
398 #endif
399                 if (n > 2) {
400                         printk("hmmm, got %d intr cells for %s:", n,
401                                np->full_name);
402                         for (j = 0; j < n; ++j)
403                                 printk(" %d", irq[j]);
404                         printk("\n");
405                 }
406                 ++intrcount;
407         }
408         np->n_intrs = intrcount;
409
410         return 0;
411 }
412
413 static int __devinit interpret_pci_props(struct device_node *np,
414                                          unsigned long *mem_start,
415                                          int naddrc, int nsizec,
416                                          int measure_only)
417 {
418         struct address_range *adr;
419         struct pci_reg_property *pci_addrs;
420         int i, l, n_addrs;
421
422         pci_addrs = (struct pci_reg_property *)
423                 get_property(np, "assigned-addresses", &l);
424         if (!pci_addrs)
425                 return 0;
426
427         n_addrs = l / sizeof(*pci_addrs);
428
429         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
430         if (!adr)
431                 return -ENOMEM;
432
433         if (measure_only)
434                 return 0;
435
436         np->addrs = adr;
437         np->n_addrs = n_addrs;
438
439         for (i = 0; i < n_addrs; i++) {
440                 adr[i].space = pci_addrs[i].addr.a_hi;
441                 adr[i].address = pci_addrs[i].addr.a_lo |
442                         ((u64)pci_addrs[i].addr.a_mid << 32);
443                 adr[i].size = pci_addrs[i].size_lo;
444         }
445
446         return 0;
447 }
448
449 static int __init interpret_dbdma_props(struct device_node *np,
450                                         unsigned long *mem_start,
451                                         int naddrc, int nsizec,
452                                         int measure_only)
453 {
454         struct reg_property32 *rp;
455         struct address_range *adr;
456         unsigned long base_address;
457         int i, l;
458         struct device_node *db;
459
460         base_address = 0;
461         if (!measure_only) {
462                 for (db = np->parent; db != NULL; db = db->parent) {
463                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
464                                 base_address = db->addrs[0].address;
465                                 break;
466                         }
467                 }
468         }
469
470         rp = (struct reg_property32 *) get_property(np, "reg", &l);
471         if (rp != 0 && l >= sizeof(struct reg_property32)) {
472                 i = 0;
473                 adr = (struct address_range *) (*mem_start);
474                 while ((l -= sizeof(struct reg_property32)) >= 0) {
475                         if (!measure_only) {
476                                 adr[i].space = 2;
477                                 adr[i].address = rp[i].address + base_address;
478                                 adr[i].size = rp[i].size;
479                         }
480                         ++i;
481                 }
482                 np->addrs = adr;
483                 np->n_addrs = i;
484                 (*mem_start) += i * sizeof(struct address_range);
485         }
486
487         return 0;
488 }
489
490 static int __init interpret_macio_props(struct device_node *np,
491                                         unsigned long *mem_start,
492                                         int naddrc, int nsizec,
493                                         int measure_only)
494 {
495         struct reg_property32 *rp;
496         struct address_range *adr;
497         unsigned long base_address;
498         int i, l;
499         struct device_node *db;
500
501         base_address = 0;
502         if (!measure_only) {
503                 for (db = np->parent; db != NULL; db = db->parent) {
504                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
505                                 base_address = db->addrs[0].address;
506                                 break;
507                         }
508                 }
509         }
510
511         rp = (struct reg_property32 *) get_property(np, "reg", &l);
512         if (rp != 0 && l >= sizeof(struct reg_property32)) {
513                 i = 0;
514                 adr = (struct address_range *) (*mem_start);
515                 while ((l -= sizeof(struct reg_property32)) >= 0) {
516                         if (!measure_only) {
517                                 adr[i].space = 2;
518                                 adr[i].address = rp[i].address + base_address;
519                                 adr[i].size = rp[i].size;
520                         }
521                         ++i;
522                 }
523                 np->addrs = adr;
524                 np->n_addrs = i;
525                 (*mem_start) += i * sizeof(struct address_range);
526         }
527
528         return 0;
529 }
530
531 static int __init interpret_isa_props(struct device_node *np,
532                                       unsigned long *mem_start,
533                                       int naddrc, int nsizec,
534                                       int measure_only)
535 {
536         struct isa_reg_property *rp;
537         struct address_range *adr;
538         int i, l;
539
540         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
541         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
542                 i = 0;
543                 adr = (struct address_range *) (*mem_start);
544                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
545                         if (!measure_only) {
546                                 adr[i].space = rp[i].space;
547                                 adr[i].address = rp[i].address;
548                                 adr[i].size = rp[i].size;
549                         }
550                         ++i;
551                 }
552                 np->addrs = adr;
553                 np->n_addrs = i;
554                 (*mem_start) += i * sizeof(struct address_range);
555         }
556
557         return 0;
558 }
559
560 static int __init interpret_root_props(struct device_node *np,
561                                        unsigned long *mem_start,
562                                        int naddrc, int nsizec,
563                                        int measure_only)
564 {
565         struct address_range *adr;
566         int i, l;
567         unsigned int *rp;
568         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
569
570         rp = (unsigned int *) get_property(np, "reg", &l);
571         if (rp != 0 && l >= rpsize) {
572                 i = 0;
573                 adr = (struct address_range *) (*mem_start);
574                 while ((l -= rpsize) >= 0) {
575                         if (!measure_only) {
576                                 adr[i].space = 0;
577                                 adr[i].address = rp[naddrc - 1];
578                                 adr[i].size = rp[naddrc + nsizec - 1];
579                         }
580                         ++i;
581                         rp += naddrc + nsizec;
582                 }
583                 np->addrs = adr;
584                 np->n_addrs = i;
585                 (*mem_start) += i * sizeof(struct address_range);
586         }
587
588         return 0;
589 }
590
591 static int __devinit finish_node(struct device_node *np,
592                                  unsigned long *mem_start,
593                                  interpret_func *ifunc,
594                                  int naddrc, int nsizec,
595                                  int measure_only)
596 {
597         struct device_node *child;
598         int *ip, rc = 0;
599
600         /* get the device addresses and interrupts */
601         if (ifunc != NULL)
602                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
603         if (rc)
604                 goto out;
605
606         rc = finish_node_interrupts(np, mem_start, measure_only);
607         if (rc)
608                 goto out;
609
610         /* Look for #address-cells and #size-cells properties. */
611         ip = (int *) get_property(np, "#address-cells", NULL);
612         if (ip != NULL)
613                 naddrc = *ip;
614         ip = (int *) get_property(np, "#size-cells", NULL);
615         if (ip != NULL)
616                 nsizec = *ip;
617
618         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
619                 ifunc = interpret_root_props;
620         else if (np->type == 0)
621                 ifunc = NULL;
622         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
623                 ifunc = interpret_pci_props;
624         else if (!strcmp(np->type, "dbdma"))
625                 ifunc = interpret_dbdma_props;
626         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
627                 ifunc = interpret_macio_props;
628         else if (!strcmp(np->type, "isa"))
629                 ifunc = interpret_isa_props;
630         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
631                 ifunc = interpret_root_props;
632         else if (!((ifunc == interpret_dbdma_props
633                     || ifunc == interpret_macio_props)
634                    && (!strcmp(np->type, "escc")
635                        || !strcmp(np->type, "media-bay"))))
636                 ifunc = NULL;
637
638         for (child = np->child; child != NULL; child = child->sibling) {
639                 rc = finish_node(child, mem_start, ifunc,
640                                  naddrc, nsizec, measure_only);
641                 if (rc)
642                         goto out;
643         }
644 out:
645         return rc;
646 }
647
648 static void __init scan_interrupt_controllers(void)
649 {
650         struct device_node *np;
651         int n = 0;
652         char *name, *ic;
653         int iclen;
654
655         for (np = allnodes; np != NULL; np = np->allnext) {
656                 ic = get_property(np, "interrupt-controller", &iclen);
657                 name = get_property(np, "name", NULL);
658                 /* checking iclen makes sure we don't get a false
659                    match on /chosen.interrupt_controller */
660                 if ((name != NULL
661                      && strcmp(name, "interrupt-controller") == 0)
662                     || (ic != NULL && iclen == 0
663                         && strcmp(name, "AppleKiwi"))) {
664                         if (n == 0)
665                                 dflt_interrupt_controller = np;
666                         ++n;
667                 }
668         }
669         num_interrupt_controllers = n;
670 }
671
672 /**
673  * finish_device_tree is called once things are running normally
674  * (i.e. with text and data mapped to the address they were linked at).
675  * It traverses the device tree and fills in some of the additional,
676  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
677  * mapping is also initialized at this point.
678  */
679 void __init finish_device_tree(void)
680 {
681         unsigned long start, end, size = 0;
682
683         DBG(" -> finish_device_tree\n");
684
685 #ifdef CONFIG_PPC64
686         /* Initialize virtual IRQ map */
687         virt_irq_init();
688 #endif
689         scan_interrupt_controllers();
690
691         /*
692          * Finish device-tree (pre-parsing some properties etc...)
693          * We do this in 2 passes. One with "measure_only" set, which
694          * will only measure the amount of memory needed, then we can
695          * allocate that memory, and call finish_node again. However,
696          * we must be careful as most routines will fail nowadays when
697          * prom_alloc() returns 0, so we must make sure our first pass
698          * doesn't start at 0. We pre-initialize size to 16 for that
699          * reason and then remove those additional 16 bytes
700          */
701         size = 16;
702         finish_node(allnodes, &size, NULL, 0, 0, 1);
703         size -= 16;
704         end = start = (unsigned long) __va(lmb_alloc(size, 128));
705         finish_node(allnodes, &end, NULL, 0, 0, 0);
706         BUG_ON(end != start + size);
707
708         DBG(" <- finish_device_tree\n");
709 }
710
711 static inline char *find_flat_dt_string(u32 offset)
712 {
713         return ((char *)initial_boot_params) +
714                 initial_boot_params->off_dt_strings + offset;
715 }
716
717 /**
718  * This function is used to scan the flattened device-tree, it is
719  * used to extract the memory informations at boot before we can
720  * unflatten the tree
721  */
722 int __init of_scan_flat_dt(int (*it)(unsigned long node,
723                                      const char *uname, int depth,
724                                      void *data),
725                            void *data)
726 {
727         unsigned long p = ((unsigned long)initial_boot_params) +
728                 initial_boot_params->off_dt_struct;
729         int rc = 0;
730         int depth = -1;
731
732         do {
733                 u32 tag = *((u32 *)p);
734                 char *pathp;
735                 
736                 p += 4;
737                 if (tag == OF_DT_END_NODE) {
738                         depth --;
739                         continue;
740                 }
741                 if (tag == OF_DT_NOP)
742                         continue;
743                 if (tag == OF_DT_END)
744                         break;
745                 if (tag == OF_DT_PROP) {
746                         u32 sz = *((u32 *)p);
747                         p += 8;
748                         if (initial_boot_params->version < 0x10)
749                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
750                         p += sz;
751                         p = _ALIGN(p, 4);
752                         continue;
753                 }
754                 if (tag != OF_DT_BEGIN_NODE) {
755                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
756                                " device tree !\n", tag);
757                         return -EINVAL;
758                 }
759                 depth++;
760                 pathp = (char *)p;
761                 p = _ALIGN(p + strlen(pathp) + 1, 4);
762                 if ((*pathp) == '/') {
763                         char *lp, *np;
764                         for (lp = NULL, np = pathp; *np; np++)
765                                 if ((*np) == '/')
766                                         lp = np+1;
767                         if (lp != NULL)
768                                 pathp = lp;
769                 }
770                 rc = it(p, pathp, depth, data);
771                 if (rc != 0)
772                         break;          
773         } while(1);
774
775         return rc;
776 }
777
778 /**
779  * This  function can be used within scan_flattened_dt callback to get
780  * access to properties
781  */
782 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
783                                  unsigned long *size)
784 {
785         unsigned long p = node;
786
787         do {
788                 u32 tag = *((u32 *)p);
789                 u32 sz, noff;
790                 const char *nstr;
791
792                 p += 4;
793                 if (tag == OF_DT_NOP)
794                         continue;
795                 if (tag != OF_DT_PROP)
796                         return NULL;
797
798                 sz = *((u32 *)p);
799                 noff = *((u32 *)(p + 4));
800                 p += 8;
801                 if (initial_boot_params->version < 0x10)
802                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
803
804                 nstr = find_flat_dt_string(noff);
805                 if (nstr == NULL) {
806                         printk(KERN_WARNING "Can't find property index"
807                                " name !\n");
808                         return NULL;
809                 }
810                 if (strcmp(name, nstr) == 0) {
811                         if (size)
812                                 *size = sz;
813                         return (void *)p;
814                 }
815                 p += sz;
816                 p = _ALIGN(p, 4);
817         } while(1);
818 }
819
820 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
821                                        unsigned long align)
822 {
823         void *res;
824
825         *mem = _ALIGN(*mem, align);
826         res = (void *)*mem;
827         *mem += size;
828
829         return res;
830 }
831
832 static unsigned long __init unflatten_dt_node(unsigned long mem,
833                                               unsigned long *p,
834                                               struct device_node *dad,
835                                               struct device_node ***allnextpp,
836                                               unsigned long fpsize)
837 {
838         struct device_node *np;
839         struct property *pp, **prev_pp = NULL;
840         char *pathp;
841         u32 tag;
842         unsigned int l, allocl;
843         int has_name = 0;
844         int new_format = 0;
845
846         tag = *((u32 *)(*p));
847         if (tag != OF_DT_BEGIN_NODE) {
848                 printk("Weird tag at start of node: %x\n", tag);
849                 return mem;
850         }
851         *p += 4;
852         pathp = (char *)*p;
853         l = allocl = strlen(pathp) + 1;
854         *p = _ALIGN(*p + l, 4);
855
856         /* version 0x10 has a more compact unit name here instead of the full
857          * path. we accumulate the full path size using "fpsize", we'll rebuild
858          * it later. We detect this because the first character of the name is
859          * not '/'.
860          */
861         if ((*pathp) != '/') {
862                 new_format = 1;
863                 if (fpsize == 0) {
864                         /* root node: special case. fpsize accounts for path
865                          * plus terminating zero. root node only has '/', so
866                          * fpsize should be 2, but we want to avoid the first
867                          * level nodes to have two '/' so we use fpsize 1 here
868                          */
869                         fpsize = 1;
870                         allocl = 2;
871                 } else {
872                         /* account for '/' and path size minus terminal 0
873                          * already in 'l'
874                          */
875                         fpsize += l;
876                         allocl = fpsize;
877                 }
878         }
879
880
881         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
882                                 __alignof__(struct device_node));
883         if (allnextpp) {
884                 memset(np, 0, sizeof(*np));
885                 np->full_name = ((char*)np) + sizeof(struct device_node);
886                 if (new_format) {
887                         char *p = np->full_name;
888                         /* rebuild full path for new format */
889                         if (dad && dad->parent) {
890                                 strcpy(p, dad->full_name);
891 #ifdef DEBUG
892                                 if ((strlen(p) + l + 1) != allocl) {
893                                         DBG("%s: p: %d, l: %d, a: %d\n",
894                                             pathp, strlen(p), l, allocl);
895                                 }
896 #endif
897                                 p += strlen(p);
898                         }
899                         *(p++) = '/';
900                         memcpy(p, pathp, l);
901                 } else
902                         memcpy(np->full_name, pathp, l);
903                 prev_pp = &np->properties;
904                 **allnextpp = np;
905                 *allnextpp = &np->allnext;
906                 if (dad != NULL) {
907                         np->parent = dad;
908                         /* we temporarily use the next field as `last_child'*/
909                         if (dad->next == 0)
910                                 dad->child = np;
911                         else
912                                 dad->next->sibling = np;
913                         dad->next = np;
914                 }
915                 kref_init(&np->kref);
916         }
917         while(1) {
918                 u32 sz, noff;
919                 char *pname;
920
921                 tag = *((u32 *)(*p));
922                 if (tag == OF_DT_NOP) {
923                         *p += 4;
924                         continue;
925                 }
926                 if (tag != OF_DT_PROP)
927                         break;
928                 *p += 4;
929                 sz = *((u32 *)(*p));
930                 noff = *((u32 *)((*p) + 4));
931                 *p += 8;
932                 if (initial_boot_params->version < 0x10)
933                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
934
935                 pname = find_flat_dt_string(noff);
936                 if (pname == NULL) {
937                         printk("Can't find property name in list !\n");
938                         break;
939                 }
940                 if (strcmp(pname, "name") == 0)
941                         has_name = 1;
942                 l = strlen(pname) + 1;
943                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
944                                         __alignof__(struct property));
945                 if (allnextpp) {
946                         if (strcmp(pname, "linux,phandle") == 0) {
947                                 np->node = *((u32 *)*p);
948                                 if (np->linux_phandle == 0)
949                                         np->linux_phandle = np->node;
950                         }
951                         if (strcmp(pname, "ibm,phandle") == 0)
952                                 np->linux_phandle = *((u32 *)*p);
953                         pp->name = pname;
954                         pp->length = sz;
955                         pp->value = (void *)*p;
956                         *prev_pp = pp;
957                         prev_pp = &pp->next;
958                 }
959                 *p = _ALIGN((*p) + sz, 4);
960         }
961         /* with version 0x10 we may not have the name property, recreate
962          * it here from the unit name if absent
963          */
964         if (!has_name) {
965                 char *p = pathp, *ps = pathp, *pa = NULL;
966                 int sz;
967
968                 while (*p) {
969                         if ((*p) == '@')
970                                 pa = p;
971                         if ((*p) == '/')
972                                 ps = p + 1;
973                         p++;
974                 }
975                 if (pa < ps)
976                         pa = p;
977                 sz = (pa - ps) + 1;
978                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
979                                         __alignof__(struct property));
980                 if (allnextpp) {
981                         pp->name = "name";
982                         pp->length = sz;
983                         pp->value = (unsigned char *)(pp + 1);
984                         *prev_pp = pp;
985                         prev_pp = &pp->next;
986                         memcpy(pp->value, ps, sz - 1);
987                         ((char *)pp->value)[sz - 1] = 0;
988                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
989                 }
990         }
991         if (allnextpp) {
992                 *prev_pp = NULL;
993                 np->name = get_property(np, "name", NULL);
994                 np->type = get_property(np, "device_type", NULL);
995
996                 if (!np->name)
997                         np->name = "<NULL>";
998                 if (!np->type)
999                         np->type = "<NULL>";
1000         }
1001         while (tag == OF_DT_BEGIN_NODE) {
1002                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1003                 tag = *((u32 *)(*p));
1004         }
1005         if (tag != OF_DT_END_NODE) {
1006                 printk("Weird tag at end of node: %x\n", tag);
1007                 return mem;
1008         }
1009         *p += 4;
1010         return mem;
1011 }
1012
1013
1014 /**
1015  * unflattens the device-tree passed by the firmware, creating the
1016  * tree of struct device_node. It also fills the "name" and "type"
1017  * pointers of the nodes so the normal device-tree walking functions
1018  * can be used (this used to be done by finish_device_tree)
1019  */
1020 void __init unflatten_device_tree(void)
1021 {
1022         unsigned long start, mem, size;
1023         struct device_node **allnextp = &allnodes;
1024         char *p = NULL;
1025         int l = 0;
1026
1027         DBG(" -> unflatten_device_tree()\n");
1028
1029         /* First pass, scan for size */
1030         start = ((unsigned long)initial_boot_params) +
1031                 initial_boot_params->off_dt_struct;
1032         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1033         size = (size | 3) + 1;
1034
1035         DBG("  size is %lx, allocating...\n", size);
1036
1037         /* Allocate memory for the expanded device tree */
1038         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1039         if (!mem) {
1040                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1041                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1042         }
1043         mem = (unsigned long) __va(mem);
1044
1045         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1046
1047         DBG("  unflattening %lx...\n", mem);
1048
1049         /* Second pass, do actual unflattening */
1050         start = ((unsigned long)initial_boot_params) +
1051                 initial_boot_params->off_dt_struct;
1052         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1053         if (*((u32 *)start) != OF_DT_END)
1054                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1055         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1056                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1057                        ((u32 *)mem)[size / 4] );
1058         *allnextp = NULL;
1059
1060         /* Get pointer to OF "/chosen" node for use everywhere */
1061         of_chosen = of_find_node_by_path("/chosen");
1062         if (of_chosen == NULL)
1063                 of_chosen = of_find_node_by_path("/chosen@0");
1064
1065         /* Retreive command line */
1066         if (of_chosen != NULL) {
1067                 p = (char *)get_property(of_chosen, "bootargs", &l);
1068                 if (p != NULL && l > 0)
1069                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1070         }
1071 #ifdef CONFIG_CMDLINE
1072         if (l == 0 || (l == 1 && (*p) == 0))
1073                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074 #endif /* CONFIG_CMDLINE */
1075
1076         DBG("Command line is: %s\n", cmd_line);
1077
1078         DBG(" <- unflatten_device_tree()\n");
1079 }
1080
1081
1082 static int __init early_init_dt_scan_cpus(unsigned long node,
1083                                           const char *uname, int depth, void *data)
1084 {
1085         u32 *prop;
1086         unsigned long size;
1087         char *type = of_get_flat_dt_prop(node, "device_type", &size);
1088
1089         /* We are scanning "cpu" nodes only */
1090         if (type == NULL || strcmp(type, "cpu") != 0)
1091                 return 0;
1092
1093         boot_cpuid = 0;
1094         boot_cpuid_phys = 0;
1095         if (initial_boot_params && initial_boot_params->version >= 2) {
1096                 /* version 2 of the kexec param format adds the phys cpuid
1097                  * of booted proc.
1098                  */
1099                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1100         } else {
1101                 /* Check if it's the boot-cpu, set it's hw index now */
1102                 if (of_get_flat_dt_prop(node,
1103                                         "linux,boot-cpu", NULL) != NULL) {
1104                         prop = of_get_flat_dt_prop(node, "reg", NULL);
1105                         if (prop != NULL)
1106                                 boot_cpuid_phys = *prop;
1107                 }
1108         }
1109         set_hard_smp_processor_id(0, boot_cpuid_phys);
1110
1111 #ifdef CONFIG_ALTIVEC
1112         /* Check if we have a VMX and eventually update CPU features */
1113         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1114         if (prop && (*prop) > 0) {
1115                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1116                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1117         }
1118
1119         /* Same goes for Apple's "altivec" property */
1120         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1121         if (prop) {
1122                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1123                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1124         }
1125 #endif /* CONFIG_ALTIVEC */
1126
1127 #ifdef CONFIG_PPC_PSERIES
1128         /*
1129          * Check for an SMT capable CPU and set the CPU feature. We do
1130          * this by looking at the size of the ibm,ppc-interrupt-server#s
1131          * property
1132          */
1133         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1134                                        &size);
1135         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1136         if (prop && ((size / sizeof(u32)) > 1))
1137                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1138 #endif
1139
1140         return 0;
1141 }
1142
1143 static int __init early_init_dt_scan_chosen(unsigned long node,
1144                                             const char *uname, int depth, void *data)
1145 {
1146         u32 *prop;
1147         unsigned long *lprop;
1148
1149         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1150
1151         if (depth != 1 ||
1152             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1153                 return 0;
1154
1155         /* get platform type */
1156         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1157         if (prop == NULL)
1158                 return 0;
1159 #ifdef CONFIG_PPC_MULTIPLATFORM
1160         _machine = *prop;
1161 #endif
1162
1163 #ifdef CONFIG_PPC64
1164         /* check if iommu is forced on or off */
1165         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1166                 iommu_is_off = 1;
1167         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1168                 iommu_force_on = 1;
1169 #endif
1170
1171         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1172         if (lprop)
1173                 memory_limit = *lprop;
1174
1175 #ifdef CONFIG_PPC64
1176         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1177         if (lprop)
1178                 tce_alloc_start = *lprop;
1179         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1180         if (lprop)
1181                 tce_alloc_end = *lprop;
1182 #endif
1183
1184 #ifdef CONFIG_PPC_RTAS
1185         /* To help early debugging via the front panel, we retreive a minimal
1186          * set of RTAS infos now if available
1187          */
1188         {
1189                 u64 *basep, *entryp;
1190
1191                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1192                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1193                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1194                 if (basep && entryp && prop) {
1195                         rtas.base = *basep;
1196                         rtas.entry = *entryp;
1197                         rtas.size = *prop;
1198                 }
1199         }
1200 #endif /* CONFIG_PPC_RTAS */
1201
1202 #ifdef CONFIG_KEXEC
1203        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1204        if (lprop)
1205                crashk_res.start = *lprop;
1206
1207        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1208        if (lprop)
1209                crashk_res.end = crashk_res.start + *lprop - 1;
1210 #endif
1211
1212         /* break now */
1213         return 1;
1214 }
1215
1216 static int __init early_init_dt_scan_root(unsigned long node,
1217                                           const char *uname, int depth, void *data)
1218 {
1219         u32 *prop;
1220
1221         if (depth != 0)
1222                 return 0;
1223
1224         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1225         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1226         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1227
1228         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1229         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1230         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1231         
1232         /* break now */
1233         return 1;
1234 }
1235
1236 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1237 {
1238         cell_t *p = *cellp;
1239         unsigned long r;
1240
1241         /* Ignore more than 2 cells */
1242         while (s > sizeof(unsigned long) / 4) {
1243                 p++;
1244                 s--;
1245         }
1246         r = *p++;
1247 #ifdef CONFIG_PPC64
1248         if (s > 1) {
1249                 r <<= 32;
1250                 r |= *(p++);
1251                 s--;
1252         }
1253 #endif
1254
1255         *cellp = p;
1256         return r;
1257 }
1258
1259
1260 static int __init early_init_dt_scan_memory(unsigned long node,
1261                                             const char *uname, int depth, void *data)
1262 {
1263         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1264         cell_t *reg, *endp;
1265         unsigned long l;
1266
1267         /* We are scanning "memory" nodes only */
1268         if (type == NULL) {
1269                 /*
1270                  * The longtrail doesn't have a device_type on the
1271                  * /memory node, so look for the node called /memory@0.
1272                  */
1273                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1274                         return 0;
1275         } else if (strcmp(type, "memory") != 0)
1276                 return 0;
1277
1278         reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1279         if (reg == NULL)
1280                 return 0;
1281
1282         endp = reg + (l / sizeof(cell_t));
1283
1284         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1285             uname, l, reg[0], reg[1], reg[2], reg[3]);
1286
1287         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1288                 unsigned long base, size;
1289
1290                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1291                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1292
1293                 if (size == 0)
1294                         continue;
1295                 DBG(" - %lx ,  %lx\n", base, size);
1296 #ifdef CONFIG_PPC64
1297                 if (iommu_is_off) {
1298                         if (base >= 0x80000000ul)
1299                                 continue;
1300                         if ((base + size) > 0x80000000ul)
1301                                 size = 0x80000000ul - base;
1302                 }
1303 #endif
1304                 lmb_add(base, size);
1305         }
1306         return 0;
1307 }
1308
1309 static void __init early_reserve_mem(void)
1310 {
1311         unsigned long base, size;
1312         unsigned long *reserve_map;
1313
1314         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1315                                         initial_boot_params->off_mem_rsvmap);
1316         while (1) {
1317                 base = *(reserve_map++);
1318                 size = *(reserve_map++);
1319                 if (size == 0)
1320                         break;
1321                 DBG("reserving: %lx -> %lx\n", base, size);
1322                 lmb_reserve(base, size);
1323         }
1324
1325 #if 0
1326         DBG("memory reserved, lmbs :\n");
1327         lmb_dump_all();
1328 #endif
1329 }
1330
1331 void __init early_init_devtree(void *params)
1332 {
1333         DBG(" -> early_init_devtree()\n");
1334
1335         /* Setup flat device-tree pointer */
1336         initial_boot_params = params;
1337
1338         /* Retrieve various informations from the /chosen node of the
1339          * device-tree, including the platform type, initrd location and
1340          * size, TCE reserve, and more ...
1341          */
1342         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1343
1344         /* Scan memory nodes and rebuild LMBs */
1345         lmb_init();
1346         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1347         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1348         lmb_enforce_memory_limit(memory_limit);
1349         lmb_analyze();
1350
1351         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1352
1353         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1354         lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1355 #ifdef CONFIG_CRASH_DUMP
1356         lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1357 #endif
1358         early_reserve_mem();
1359
1360         DBG("Scanning CPUs ...\n");
1361
1362         /* Retreive CPU related informations from the flat tree
1363          * (altivec support, boot CPU ID, ...)
1364          */
1365         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1366
1367         DBG(" <- early_init_devtree()\n");
1368 }
1369
1370 #undef printk
1371
1372 int
1373 prom_n_addr_cells(struct device_node* np)
1374 {
1375         int* ip;
1376         do {
1377                 if (np->parent)
1378                         np = np->parent;
1379                 ip = (int *) get_property(np, "#address-cells", NULL);
1380                 if (ip != NULL)
1381                         return *ip;
1382         } while (np->parent);
1383         /* No #address-cells property for the root node, default to 1 */
1384         return 1;
1385 }
1386 EXPORT_SYMBOL(prom_n_addr_cells);
1387
1388 int
1389 prom_n_size_cells(struct device_node* np)
1390 {
1391         int* ip;
1392         do {
1393                 if (np->parent)
1394                         np = np->parent;
1395                 ip = (int *) get_property(np, "#size-cells", NULL);
1396                 if (ip != NULL)
1397                         return *ip;
1398         } while (np->parent);
1399         /* No #size-cells property for the root node, default to 1 */
1400         return 1;
1401 }
1402 EXPORT_SYMBOL(prom_n_size_cells);
1403
1404 /**
1405  * Work out the sense (active-low level / active-high edge)
1406  * of each interrupt from the device tree.
1407  */
1408 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1409 {
1410         struct device_node *np;
1411         int i, j;
1412
1413         /* default to level-triggered */
1414         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1415
1416         for (np = allnodes; np != 0; np = np->allnext) {
1417                 for (j = 0; j < np->n_intrs; j++) {
1418                         i = np->intrs[j].line;
1419                         if (i >= off && i < max)
1420                                 senses[i-off] = np->intrs[j].sense;
1421                 }
1422         }
1423 }
1424
1425 /**
1426  * Construct and return a list of the device_nodes with a given name.
1427  */
1428 struct device_node *find_devices(const char *name)
1429 {
1430         struct device_node *head, **prevp, *np;
1431
1432         prevp = &head;
1433         for (np = allnodes; np != 0; np = np->allnext) {
1434                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1435                         *prevp = np;
1436                         prevp = &np->next;
1437                 }
1438         }
1439         *prevp = NULL;
1440         return head;
1441 }
1442 EXPORT_SYMBOL(find_devices);
1443
1444 /**
1445  * Construct and return a list of the device_nodes with a given type.
1446  */
1447 struct device_node *find_type_devices(const char *type)
1448 {
1449         struct device_node *head, **prevp, *np;
1450
1451         prevp = &head;
1452         for (np = allnodes; np != 0; np = np->allnext) {
1453                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1454                         *prevp = np;
1455                         prevp = &np->next;
1456                 }
1457         }
1458         *prevp = NULL;
1459         return head;
1460 }
1461 EXPORT_SYMBOL(find_type_devices);
1462
1463 /**
1464  * Returns all nodes linked together
1465  */
1466 struct device_node *find_all_nodes(void)
1467 {
1468         struct device_node *head, **prevp, *np;
1469
1470         prevp = &head;
1471         for (np = allnodes; np != 0; np = np->allnext) {
1472                 *prevp = np;
1473                 prevp = &np->next;
1474         }
1475         *prevp = NULL;
1476         return head;
1477 }
1478 EXPORT_SYMBOL(find_all_nodes);
1479
1480 /** Checks if the given "compat" string matches one of the strings in
1481  * the device's "compatible" property
1482  */
1483 int device_is_compatible(struct device_node *device, const char *compat)
1484 {
1485         const char* cp;
1486         int cplen, l;
1487
1488         cp = (char *) get_property(device, "compatible", &cplen);
1489         if (cp == NULL)
1490                 return 0;
1491         while (cplen > 0) {
1492                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1493                         return 1;
1494                 l = strlen(cp) + 1;
1495                 cp += l;
1496                 cplen -= l;
1497         }
1498
1499         return 0;
1500 }
1501 EXPORT_SYMBOL(device_is_compatible);
1502
1503
1504 /**
1505  * Indicates whether the root node has a given value in its
1506  * compatible property.
1507  */
1508 int machine_is_compatible(const char *compat)
1509 {
1510         struct device_node *root;
1511         int rc = 0;
1512
1513         root = of_find_node_by_path("/");
1514         if (root) {
1515                 rc = device_is_compatible(root, compat);
1516                 of_node_put(root);
1517         }
1518         return rc;
1519 }
1520 EXPORT_SYMBOL(machine_is_compatible);
1521
1522 /**
1523  * Construct and return a list of the device_nodes with a given type
1524  * and compatible property.
1525  */
1526 struct device_node *find_compatible_devices(const char *type,
1527                                             const char *compat)
1528 {
1529         struct device_node *head, **prevp, *np;
1530
1531         prevp = &head;
1532         for (np = allnodes; np != 0; np = np->allnext) {
1533                 if (type != NULL
1534                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1535                         continue;
1536                 if (device_is_compatible(np, compat)) {
1537                         *prevp = np;
1538                         prevp = &np->next;
1539                 }
1540         }
1541         *prevp = NULL;
1542         return head;
1543 }
1544 EXPORT_SYMBOL(find_compatible_devices);
1545
1546 /**
1547  * Find the device_node with a given full_name.
1548  */
1549 struct device_node *find_path_device(const char *path)
1550 {
1551         struct device_node *np;
1552
1553         for (np = allnodes; np != 0; np = np->allnext)
1554                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1555                         return np;
1556         return NULL;
1557 }
1558 EXPORT_SYMBOL(find_path_device);
1559
1560 /*******
1561  *
1562  * New implementation of the OF "find" APIs, return a refcounted
1563  * object, call of_node_put() when done.  The device tree and list
1564  * are protected by a rw_lock.
1565  *
1566  * Note that property management will need some locking as well,
1567  * this isn't dealt with yet.
1568  *
1569  *******/
1570
1571 /**
1572  *      of_find_node_by_name - Find a node by its "name" property
1573  *      @from:  The node to start searching from or NULL, the node
1574  *              you pass will not be searched, only the next one
1575  *              will; typically, you pass what the previous call
1576  *              returned. of_node_put() will be called on it
1577  *      @name:  The name string to match against
1578  *
1579  *      Returns a node pointer with refcount incremented, use
1580  *      of_node_put() on it when done.
1581  */
1582 struct device_node *of_find_node_by_name(struct device_node *from,
1583         const char *name)
1584 {
1585         struct device_node *np;
1586
1587         read_lock(&devtree_lock);
1588         np = from ? from->allnext : allnodes;
1589         for (; np != 0; np = np->allnext)
1590                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1591                     && of_node_get(np))
1592                         break;
1593         if (from)
1594                 of_node_put(from);
1595         read_unlock(&devtree_lock);
1596         return np;
1597 }
1598 EXPORT_SYMBOL(of_find_node_by_name);
1599
1600 /**
1601  *      of_find_node_by_type - Find a node by its "device_type" property
1602  *      @from:  The node to start searching from or NULL, the node
1603  *              you pass will not be searched, only the next one
1604  *              will; typically, you pass what the previous call
1605  *              returned. of_node_put() will be called on it
1606  *      @name:  The type string to match against
1607  *
1608  *      Returns a node pointer with refcount incremented, use
1609  *      of_node_put() on it when done.
1610  */
1611 struct device_node *of_find_node_by_type(struct device_node *from,
1612         const char *type)
1613 {
1614         struct device_node *np;
1615
1616         read_lock(&devtree_lock);
1617         np = from ? from->allnext : allnodes;
1618         for (; np != 0; np = np->allnext)
1619                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1620                     && of_node_get(np))
1621                         break;
1622         if (from)
1623                 of_node_put(from);
1624         read_unlock(&devtree_lock);
1625         return np;
1626 }
1627 EXPORT_SYMBOL(of_find_node_by_type);
1628
1629 /**
1630  *      of_find_compatible_node - Find a node based on type and one of the
1631  *                                tokens in its "compatible" property
1632  *      @from:          The node to start searching from or NULL, the node
1633  *                      you pass will not be searched, only the next one
1634  *                      will; typically, you pass what the previous call
1635  *                      returned. of_node_put() will be called on it
1636  *      @type:          The type string to match "device_type" or NULL to ignore
1637  *      @compatible:    The string to match to one of the tokens in the device
1638  *                      "compatible" list.
1639  *
1640  *      Returns a node pointer with refcount incremented, use
1641  *      of_node_put() on it when done.
1642  */
1643 struct device_node *of_find_compatible_node(struct device_node *from,
1644         const char *type, const char *compatible)
1645 {
1646         struct device_node *np;
1647
1648         read_lock(&devtree_lock);
1649         np = from ? from->allnext : allnodes;
1650         for (; np != 0; np = np->allnext) {
1651                 if (type != NULL
1652                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1653                         continue;
1654                 if (device_is_compatible(np, compatible) && of_node_get(np))
1655                         break;
1656         }
1657         if (from)
1658                 of_node_put(from);
1659         read_unlock(&devtree_lock);
1660         return np;
1661 }
1662 EXPORT_SYMBOL(of_find_compatible_node);
1663
1664 /**
1665  *      of_find_node_by_path - Find a node matching a full OF path
1666  *      @path:  The full path to match
1667  *
1668  *      Returns a node pointer with refcount incremented, use
1669  *      of_node_put() on it when done.
1670  */
1671 struct device_node *of_find_node_by_path(const char *path)
1672 {
1673         struct device_node *np = allnodes;
1674
1675         read_lock(&devtree_lock);
1676         for (; np != 0; np = np->allnext) {
1677                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1678                     && of_node_get(np))
1679                         break;
1680         }
1681         read_unlock(&devtree_lock);
1682         return np;
1683 }
1684 EXPORT_SYMBOL(of_find_node_by_path);
1685
1686 /**
1687  *      of_find_node_by_phandle - Find a node given a phandle
1688  *      @handle:        phandle of the node to find
1689  *
1690  *      Returns a node pointer with refcount incremented, use
1691  *      of_node_put() on it when done.
1692  */
1693 struct device_node *of_find_node_by_phandle(phandle handle)
1694 {
1695         struct device_node *np;
1696
1697         read_lock(&devtree_lock);
1698         for (np = allnodes; np != 0; np = np->allnext)
1699                 if (np->linux_phandle == handle)
1700                         break;
1701         if (np)
1702                 of_node_get(np);
1703         read_unlock(&devtree_lock);
1704         return np;
1705 }
1706 EXPORT_SYMBOL(of_find_node_by_phandle);
1707
1708 /**
1709  *      of_find_all_nodes - Get next node in global list
1710  *      @prev:  Previous node or NULL to start iteration
1711  *              of_node_put() will be called on it
1712  *
1713  *      Returns a node pointer with refcount incremented, use
1714  *      of_node_put() on it when done.
1715  */
1716 struct device_node *of_find_all_nodes(struct device_node *prev)
1717 {
1718         struct device_node *np;
1719
1720         read_lock(&devtree_lock);
1721         np = prev ? prev->allnext : allnodes;
1722         for (; np != 0; np = np->allnext)
1723                 if (of_node_get(np))
1724                         break;
1725         if (prev)
1726                 of_node_put(prev);
1727         read_unlock(&devtree_lock);
1728         return np;
1729 }
1730 EXPORT_SYMBOL(of_find_all_nodes);
1731
1732 /**
1733  *      of_get_parent - Get a node's parent if any
1734  *      @node:  Node to get parent
1735  *
1736  *      Returns a node pointer with refcount incremented, use
1737  *      of_node_put() on it when done.
1738  */
1739 struct device_node *of_get_parent(const struct device_node *node)
1740 {
1741         struct device_node *np;
1742
1743         if (!node)
1744                 return NULL;
1745
1746         read_lock(&devtree_lock);
1747         np = of_node_get(node->parent);
1748         read_unlock(&devtree_lock);
1749         return np;
1750 }
1751 EXPORT_SYMBOL(of_get_parent);
1752
1753 /**
1754  *      of_get_next_child - Iterate a node childs
1755  *      @node:  parent node
1756  *      @prev:  previous child of the parent node, or NULL to get first
1757  *
1758  *      Returns a node pointer with refcount incremented, use
1759  *      of_node_put() on it when done.
1760  */
1761 struct device_node *of_get_next_child(const struct device_node *node,
1762         struct device_node *prev)
1763 {
1764         struct device_node *next;
1765
1766         read_lock(&devtree_lock);
1767         next = prev ? prev->sibling : node->child;
1768         for (; next != 0; next = next->sibling)
1769                 if (of_node_get(next))
1770                         break;
1771         if (prev)
1772                 of_node_put(prev);
1773         read_unlock(&devtree_lock);
1774         return next;
1775 }
1776 EXPORT_SYMBOL(of_get_next_child);
1777
1778 /**
1779  *      of_node_get - Increment refcount of a node
1780  *      @node:  Node to inc refcount, NULL is supported to
1781  *              simplify writing of callers
1782  *
1783  *      Returns node.
1784  */
1785 struct device_node *of_node_get(struct device_node *node)
1786 {
1787         if (node)
1788                 kref_get(&node->kref);
1789         return node;
1790 }
1791 EXPORT_SYMBOL(of_node_get);
1792
1793 static inline struct device_node * kref_to_device_node(struct kref *kref)
1794 {
1795         return container_of(kref, struct device_node, kref);
1796 }
1797
1798 /**
1799  *      of_node_release - release a dynamically allocated node
1800  *      @kref:  kref element of the node to be released
1801  *
1802  *      In of_node_put() this function is passed to kref_put()
1803  *      as the destructor.
1804  */
1805 static void of_node_release(struct kref *kref)
1806 {
1807         struct device_node *node = kref_to_device_node(kref);
1808         struct property *prop = node->properties;
1809
1810         if (!OF_IS_DYNAMIC(node))
1811                 return;
1812         while (prop) {
1813                 struct property *next = prop->next;
1814                 kfree(prop->name);
1815                 kfree(prop->value);
1816                 kfree(prop);
1817                 prop = next;
1818         }
1819         kfree(node->intrs);
1820         kfree(node->addrs);
1821         kfree(node->full_name);
1822         kfree(node->data);
1823         kfree(node);
1824 }
1825
1826 /**
1827  *      of_node_put - Decrement refcount of a node
1828  *      @node:  Node to dec refcount, NULL is supported to
1829  *              simplify writing of callers
1830  *
1831  */
1832 void of_node_put(struct device_node *node)
1833 {
1834         if (node)
1835                 kref_put(&node->kref, of_node_release);
1836 }
1837 EXPORT_SYMBOL(of_node_put);
1838
1839 /*
1840  * Plug a device node into the tree and global list.
1841  */
1842 void of_attach_node(struct device_node *np)
1843 {
1844         write_lock(&devtree_lock);
1845         np->sibling = np->parent->child;
1846         np->allnext = allnodes;
1847         np->parent->child = np;
1848         allnodes = np;
1849         write_unlock(&devtree_lock);
1850 }
1851
1852 /*
1853  * "Unplug" a node from the device tree.  The caller must hold
1854  * a reference to the node.  The memory associated with the node
1855  * is not freed until its refcount goes to zero.
1856  */
1857 void of_detach_node(const struct device_node *np)
1858 {
1859         struct device_node *parent;
1860
1861         write_lock(&devtree_lock);
1862
1863         parent = np->parent;
1864
1865         if (allnodes == np)
1866                 allnodes = np->allnext;
1867         else {
1868                 struct device_node *prev;
1869                 for (prev = allnodes;
1870                      prev->allnext != np;
1871                      prev = prev->allnext)
1872                         ;
1873                 prev->allnext = np->allnext;
1874         }
1875
1876         if (parent->child == np)
1877                 parent->child = np->sibling;
1878         else {
1879                 struct device_node *prevsib;
1880                 for (prevsib = np->parent->child;
1881                      prevsib->sibling != np;
1882                      prevsib = prevsib->sibling)
1883                         ;
1884                 prevsib->sibling = np->sibling;
1885         }
1886
1887         write_unlock(&devtree_lock);
1888 }
1889
1890 #ifdef CONFIG_PPC_PSERIES
1891 /*
1892  * Fix up the uninitialized fields in a new device node:
1893  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1894  *
1895  * A lot of boot-time code is duplicated here, because functions such
1896  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1897  * slab allocator.
1898  *
1899  * This should probably be split up into smaller chunks.
1900  */
1901
1902 static int of_finish_dynamic_node(struct device_node *node,
1903                                   unsigned long *unused1, int unused2,
1904                                   int unused3, int unused4)
1905 {
1906         struct device_node *parent = of_get_parent(node);
1907         int err = 0;
1908         phandle *ibm_phandle;
1909
1910         node->name = get_property(node, "name", NULL);
1911         node->type = get_property(node, "device_type", NULL);
1912
1913         if (!parent) {
1914                 err = -ENODEV;
1915                 goto out;
1916         }
1917
1918         /* We don't support that function on PowerMac, at least
1919          * not yet
1920          */
1921         if (_machine == PLATFORM_POWERMAC)
1922                 return -ENODEV;
1923
1924         /* fix up new node's linux_phandle field */
1925         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1926                 node->linux_phandle = *ibm_phandle;
1927
1928 out:
1929         of_node_put(parent);
1930         return err;
1931 }
1932
1933 static int prom_reconfig_notifier(struct notifier_block *nb,
1934                                   unsigned long action, void *node)
1935 {
1936         int err;
1937
1938         switch (action) {
1939         case PSERIES_RECONFIG_ADD:
1940                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1941                 if (err < 0) {
1942                         printk(KERN_ERR "finish_node returned %d\n", err);
1943                         err = NOTIFY_BAD;
1944                 }
1945                 break;
1946         default:
1947                 err = NOTIFY_DONE;
1948                 break;
1949         }
1950         return err;
1951 }
1952
1953 static struct notifier_block prom_reconfig_nb = {
1954         .notifier_call = prom_reconfig_notifier,
1955         .priority = 10, /* This one needs to run first */
1956 };
1957
1958 static int __init prom_reconfig_setup(void)
1959 {
1960         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1961 }
1962 __initcall(prom_reconfig_setup);
1963 #endif
1964
1965 /*
1966  * Find a property with a given name for a given node
1967  * and return the value.
1968  */
1969 unsigned char *get_property(struct device_node *np, const char *name,
1970                             int *lenp)
1971 {
1972         struct property *pp;
1973
1974         for (pp = np->properties; pp != 0; pp = pp->next)
1975                 if (strcmp(pp->name, name) == 0) {
1976                         if (lenp != 0)
1977                                 *lenp = pp->length;
1978                         return pp->value;
1979                 }
1980         return NULL;
1981 }
1982 EXPORT_SYMBOL(get_property);
1983
1984 /*
1985  * Add a property to a node
1986  */
1987 int prom_add_property(struct device_node* np, struct property* prop)
1988 {
1989         struct property **next;
1990
1991         prop->next = NULL;      
1992         write_lock(&devtree_lock);
1993         next = &np->properties;
1994         while (*next) {
1995                 if (strcmp(prop->name, (*next)->name) == 0) {
1996                         /* duplicate ! don't insert it */
1997                         write_unlock(&devtree_lock);
1998                         return -1;
1999                 }
2000                 next = &(*next)->next;
2001         }
2002         *next = prop;
2003         write_unlock(&devtree_lock);
2004
2005 #ifdef CONFIG_PROC_DEVICETREE
2006         /* try to add to proc as well if it was initialized */
2007         if (np->pde)
2008                 proc_device_tree_add_prop(np->pde, prop);
2009 #endif /* CONFIG_PROC_DEVICETREE */
2010
2011         return 0;
2012 }
2013
2014 /* I quickly hacked that one, check against spec ! */
2015 static inline unsigned long
2016 bus_space_to_resource_flags(unsigned int bus_space)
2017 {
2018         u8 space = (bus_space >> 24) & 0xf;
2019         if (space == 0)
2020                 space = 0x02;
2021         if (space == 0x02)
2022                 return IORESOURCE_MEM;
2023         else if (space == 0x01)
2024                 return IORESOURCE_IO;
2025         else {
2026                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2027                         bus_space);
2028                 return 0;
2029         }
2030 }
2031
2032 #ifdef CONFIG_PCI
2033 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2034                                                  struct address_range *range)
2035 {
2036         unsigned long mask;
2037         int i;
2038
2039         /* Check this one */
2040         mask = bus_space_to_resource_flags(range->space);
2041         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2042                 if ((pdev->resource[i].flags & mask) == mask &&
2043                         pdev->resource[i].start <= range->address &&
2044                         pdev->resource[i].end > range->address) {
2045                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2046                                         /* Add better message */
2047                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2048                                         return NULL;
2049                                 }
2050                                 break;
2051                         }
2052         }
2053         if (i == DEVICE_COUNT_RESOURCE)
2054                 return NULL;
2055         return &pdev->resource[i];
2056 }
2057
2058 /*
2059  * Request an OF device resource. Currently handles child of PCI devices,
2060  * or other nodes attached to the root node. Ultimately, put some
2061  * link to resources in the OF node.
2062  */
2063 struct resource *request_OF_resource(struct device_node* node, int index,
2064                                      const char* name_postfix)
2065 {
2066         struct pci_dev* pcidev;
2067         u8 pci_bus, pci_devfn;
2068         unsigned long iomask;
2069         struct device_node* nd;
2070         struct resource* parent;
2071         struct resource *res = NULL;
2072         int nlen, plen;
2073
2074         if (index >= node->n_addrs)
2075                 goto fail;
2076
2077         /* Sanity check on bus space */
2078         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2079         if (iomask & IORESOURCE_MEM)
2080                 parent = &iomem_resource;
2081         else if (iomask & IORESOURCE_IO)
2082                 parent = &ioport_resource;
2083         else
2084                 goto fail;
2085
2086         /* Find a PCI parent if any */
2087         nd = node;
2088         pcidev = NULL;
2089         while (nd) {
2090                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2091                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2092                 if (pcidev) break;
2093                 nd = nd->parent;
2094         }
2095         if (pcidev)
2096                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2097         if (!parent) {
2098                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2099                         node->name);
2100                 goto fail;
2101         }
2102
2103         res = __request_region(parent, node->addrs[index].address,
2104                                node->addrs[index].size, NULL);
2105         if (!res)
2106                 goto fail;
2107         nlen = strlen(node->name);
2108         plen = name_postfix ? strlen(name_postfix) : 0;
2109         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2110         if (res->name) {
2111                 strcpy((char *)res->name, node->name);
2112                 if (plen)
2113                         strcpy((char *)res->name+nlen, name_postfix);
2114         }
2115         return res;
2116 fail:
2117         return NULL;
2118 }
2119 EXPORT_SYMBOL(request_OF_resource);
2120
2121 int release_OF_resource(struct device_node *node, int index)
2122 {
2123         struct pci_dev* pcidev;
2124         u8 pci_bus, pci_devfn;
2125         unsigned long iomask, start, end;
2126         struct device_node* nd;
2127         struct resource* parent;
2128         struct resource *res = NULL;
2129
2130         if (index >= node->n_addrs)
2131                 return -EINVAL;
2132
2133         /* Sanity check on bus space */
2134         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2135         if (iomask & IORESOURCE_MEM)
2136                 parent = &iomem_resource;
2137         else if (iomask & IORESOURCE_IO)
2138                 parent = &ioport_resource;
2139         else
2140                 return -EINVAL;
2141
2142         /* Find a PCI parent if any */
2143         nd = node;
2144         pcidev = NULL;
2145         while(nd) {
2146                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2147                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2148                 if (pcidev) break;
2149                 nd = nd->parent;
2150         }
2151         if (pcidev)
2152                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2153         if (!parent) {
2154                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2155                         node->name);
2156                 return -ENODEV;
2157         }
2158
2159         /* Find us in the parent and its childs */
2160         res = parent->child;
2161         start = node->addrs[index].address;
2162         end = start + node->addrs[index].size - 1;
2163         while (res) {
2164                 if (res->start == start && res->end == end &&
2165                     (res->flags & IORESOURCE_BUSY))
2166                         break;
2167                 if (res->start <= start && res->end >= end)
2168                         res = res->child;
2169                 else
2170                         res = res->sibling;
2171         }
2172         if (!res)
2173                 return -ENODEV;
2174
2175         if (res->name) {
2176                 kfree(res->name);
2177                 res->name = NULL;
2178         }
2179         release_resource(res);
2180         kfree(res);
2181
2182         return 0;
2183 }
2184 EXPORT_SYMBOL(release_OF_resource);
2185 #endif /* CONFIG_PCI */