]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/kernel/prom.c
[PATCH] powerpc: Add support for "linux,usable-memory" on memory nodes
[linux-2.6-omap-h63xx.git] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60 struct pci_reg_property {
61         struct pci_address addr;
62         u32 size_hi;
63         u32 size_lo;
64 };
65
66 struct isa_reg_property {
67         u32 space;
68         u32 address;
69         u32 size;
70 };
71
72
73 typedef int interpret_func(struct device_node *, unsigned long *,
74                            int, int, int);
75
76 static int __initdata dt_root_addr_cells;
77 static int __initdata dt_root_size_cells;
78
79 #ifdef CONFIG_PPC64
80 static int __initdata iommu_is_off;
81 int __initdata iommu_force_on;
82 unsigned long tce_alloc_start, tce_alloc_end;
83 #endif
84
85 typedef u32 cell_t;
86
87 #if 0
88 static struct boot_param_header *initial_boot_params __initdata;
89 #else
90 struct boot_param_header *initial_boot_params;
91 #endif
92
93 static struct device_node *allnodes = NULL;
94
95 /* use when traversing tree through the allnext, child, sibling,
96  * or parent members of struct device_node.
97  */
98 static DEFINE_RWLOCK(devtree_lock);
99
100 /* export that to outside world */
101 struct device_node *of_chosen;
102
103 struct device_node *dflt_interrupt_controller;
104 int num_interrupt_controllers;
105
106 /*
107  * Wrapper for allocating memory for various data that needs to be
108  * attached to device nodes as they are processed at boot or when
109  * added to the device tree later (e.g. DLPAR).  At boot there is
110  * already a region reserved so we just increment *mem_start by size;
111  * otherwise we call kmalloc.
112  */
113 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
114 {
115         unsigned long tmp;
116
117         if (!mem_start)
118                 return kmalloc(size, GFP_KERNEL);
119
120         tmp = *mem_start;
121         *mem_start += size;
122         return (void *)tmp;
123 }
124
125 /*
126  * Find the device_node with a given phandle.
127  */
128 static struct device_node * find_phandle(phandle ph)
129 {
130         struct device_node *np;
131
132         for (np = allnodes; np != 0; np = np->allnext)
133                 if (np->linux_phandle == ph)
134                         return np;
135         return NULL;
136 }
137
138 /*
139  * Find the interrupt parent of a node.
140  */
141 static struct device_node * __devinit intr_parent(struct device_node *p)
142 {
143         phandle *parp;
144
145         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
146         if (parp == NULL)
147                 return p->parent;
148         p = find_phandle(*parp);
149         if (p != NULL)
150                 return p;
151         /*
152          * On a powermac booted with BootX, we don't get to know the
153          * phandles for any nodes, so find_phandle will return NULL.
154          * Fortunately these machines only have one interrupt controller
155          * so there isn't in fact any ambiguity.  -- paulus
156          */
157         if (num_interrupt_controllers == 1)
158                 p = dflt_interrupt_controller;
159         return p;
160 }
161
162 /*
163  * Find out the size of each entry of the interrupts property
164  * for a node.
165  */
166 int __devinit prom_n_intr_cells(struct device_node *np)
167 {
168         struct device_node *p;
169         unsigned int *icp;
170
171         for (p = np; (p = intr_parent(p)) != NULL; ) {
172                 icp = (unsigned int *)
173                         get_property(p, "#interrupt-cells", NULL);
174                 if (icp != NULL)
175                         return *icp;
176                 if (get_property(p, "interrupt-controller", NULL) != NULL
177                     || get_property(p, "interrupt-map", NULL) != NULL) {
178                         printk("oops, node %s doesn't have #interrupt-cells\n",
179                                p->full_name);
180                         return 1;
181                 }
182         }
183 #ifdef DEBUG_IRQ
184         printk("prom_n_intr_cells failed for %s\n", np->full_name);
185 #endif
186         return 1;
187 }
188
189 /*
190  * Map an interrupt from a device up to the platform interrupt
191  * descriptor.
192  */
193 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
194                                    struct device_node *np, unsigned int *ints,
195                                    int nintrc)
196 {
197         struct device_node *p, *ipar;
198         unsigned int *imap, *imask, *ip;
199         int i, imaplen, match;
200         int newintrc = 0, newaddrc = 0;
201         unsigned int *reg;
202         int naddrc;
203
204         reg = (unsigned int *) get_property(np, "reg", NULL);
205         naddrc = prom_n_addr_cells(np);
206         p = intr_parent(np);
207         while (p != NULL) {
208                 if (get_property(p, "interrupt-controller", NULL) != NULL)
209                         /* this node is an interrupt controller, stop here */
210                         break;
211                 imap = (unsigned int *)
212                         get_property(p, "interrupt-map", &imaplen);
213                 if (imap == NULL) {
214                         p = intr_parent(p);
215                         continue;
216                 }
217                 imask = (unsigned int *)
218                         get_property(p, "interrupt-map-mask", NULL);
219                 if (imask == NULL) {
220                         printk("oops, %s has interrupt-map but no mask\n",
221                                p->full_name);
222                         return 0;
223                 }
224                 imaplen /= sizeof(unsigned int);
225                 match = 0;
226                 ipar = NULL;
227                 while (imaplen > 0 && !match) {
228                         /* check the child-interrupt field */
229                         match = 1;
230                         for (i = 0; i < naddrc && match; ++i)
231                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
232                         for (; i < naddrc + nintrc && match; ++i)
233                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
234                         imap += naddrc + nintrc;
235                         imaplen -= naddrc + nintrc;
236                         /* grab the interrupt parent */
237                         ipar = find_phandle((phandle) *imap++);
238                         --imaplen;
239                         if (ipar == NULL && num_interrupt_controllers == 1)
240                                 /* cope with BootX not giving us phandles */
241                                 ipar = dflt_interrupt_controller;
242                         if (ipar == NULL) {
243                                 printk("oops, no int parent %x in map of %s\n",
244                                        imap[-1], p->full_name);
245                                 return 0;
246                         }
247                         /* find the parent's # addr and intr cells */
248                         ip = (unsigned int *)
249                                 get_property(ipar, "#interrupt-cells", NULL);
250                         if (ip == NULL) {
251                                 printk("oops, no #interrupt-cells on %s\n",
252                                        ipar->full_name);
253                                 return 0;
254                         }
255                         newintrc = *ip;
256                         ip = (unsigned int *)
257                                 get_property(ipar, "#address-cells", NULL);
258                         newaddrc = (ip == NULL)? 0: *ip;
259                         imap += newaddrc + newintrc;
260                         imaplen -= newaddrc + newintrc;
261                 }
262                 if (imaplen < 0) {
263                         printk("oops, error decoding int-map on %s, len=%d\n",
264                                p->full_name, imaplen);
265                         return 0;
266                 }
267                 if (!match) {
268 #ifdef DEBUG_IRQ
269                         printk("oops, no match in %s int-map for %s\n",
270                                p->full_name, np->full_name);
271 #endif
272                         return 0;
273                 }
274                 p = ipar;
275                 naddrc = newaddrc;
276                 nintrc = newintrc;
277                 ints = imap - nintrc;
278                 reg = ints - naddrc;
279         }
280         if (p == NULL) {
281 #ifdef DEBUG_IRQ
282                 printk("hmmm, int tree for %s doesn't have ctrler\n",
283                        np->full_name);
284 #endif
285                 return 0;
286         }
287         *irq = ints;
288         *ictrler = p;
289         return nintrc;
290 }
291
292 static unsigned char map_isa_senses[4] = {
293         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
294         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
295         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
296         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
297 };
298
299 static unsigned char map_mpic_senses[4] = {
300         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
301         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
302         /* 2 seems to be used for the 8259 cascade... */
303         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
304         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
305 };
306
307 static int __devinit finish_node_interrupts(struct device_node *np,
308                                             unsigned long *mem_start,
309                                             int measure_only)
310 {
311         unsigned int *ints;
312         int intlen, intrcells, intrcount;
313         int i, j, n, sense;
314         unsigned int *irq, virq;
315         struct device_node *ic;
316
317         if (num_interrupt_controllers == 0) {
318                 /*
319                  * Old machines just have a list of interrupt numbers
320                  * and no interrupt-controller nodes.
321                  */
322                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
323                                                      &intlen);
324                 /* XXX old interpret_pci_props looked in parent too */
325                 /* XXX old interpret_macio_props looked for interrupts
326                    before AAPL,interrupts */
327                 if (ints == NULL)
328                         ints = (unsigned int *) get_property(np, "interrupts",
329                                                              &intlen);
330                 if (ints == NULL)
331                         return 0;
332
333                 np->n_intrs = intlen / sizeof(unsigned int);
334                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
335                                        mem_start);
336                 if (!np->intrs)
337                         return -ENOMEM;
338                 if (measure_only)
339                         return 0;
340
341                 for (i = 0; i < np->n_intrs; ++i) {
342                         np->intrs[i].line = *ints++;
343                         np->intrs[i].sense = IRQ_SENSE_LEVEL
344                                 | IRQ_POLARITY_NEGATIVE;
345                 }
346                 return 0;
347         }
348
349         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
350         if (ints == NULL)
351                 return 0;
352         intrcells = prom_n_intr_cells(np);
353         intlen /= intrcells * sizeof(unsigned int);
354
355         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
356         if (!np->intrs)
357                 return -ENOMEM;
358
359         if (measure_only)
360                 return 0;
361
362         intrcount = 0;
363         for (i = 0; i < intlen; ++i, ints += intrcells) {
364                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
365                 if (n <= 0)
366                         continue;
367
368                 /* don't map IRQ numbers under a cascaded 8259 controller */
369                 if (ic && device_is_compatible(ic, "chrp,iic")) {
370                         np->intrs[intrcount].line = irq[0];
371                         sense = (n > 1)? (irq[1] & 3): 3;
372                         np->intrs[intrcount].sense = map_isa_senses[sense];
373                 } else {
374                         virq = virt_irq_create_mapping(irq[0]);
375 #ifdef CONFIG_PPC64
376                         if (virq == NO_IRQ) {
377                                 printk(KERN_CRIT "Could not allocate interrupt"
378                                        " number for %s\n", np->full_name);
379                                 continue;
380                         }
381 #endif
382                         np->intrs[intrcount].line = irq_offset_up(virq);
383                         sense = (n > 1)? (irq[1] & 3): 1;
384                         np->intrs[intrcount].sense = map_mpic_senses[sense];
385                 }
386
387 #ifdef CONFIG_PPC64
388                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
389                 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
390                         char *name = get_property(ic->parent, "name", NULL);
391                         if (name && !strcmp(name, "u3"))
392                                 np->intrs[intrcount].line += 128;
393                         else if (!(name && !strcmp(name, "mac-io")))
394                                 /* ignore other cascaded controllers, such as
395                                    the k2-sata-root */
396                                 break;
397                 }
398 #endif
399                 if (n > 2) {
400                         printk("hmmm, got %d intr cells for %s:", n,
401                                np->full_name);
402                         for (j = 0; j < n; ++j)
403                                 printk(" %d", irq[j]);
404                         printk("\n");
405                 }
406                 ++intrcount;
407         }
408         np->n_intrs = intrcount;
409
410         return 0;
411 }
412
413 static int __devinit interpret_pci_props(struct device_node *np,
414                                          unsigned long *mem_start,
415                                          int naddrc, int nsizec,
416                                          int measure_only)
417 {
418         struct address_range *adr;
419         struct pci_reg_property *pci_addrs;
420         int i, l, n_addrs;
421
422         pci_addrs = (struct pci_reg_property *)
423                 get_property(np, "assigned-addresses", &l);
424         if (!pci_addrs)
425                 return 0;
426
427         n_addrs = l / sizeof(*pci_addrs);
428
429         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
430         if (!adr)
431                 return -ENOMEM;
432
433         if (measure_only)
434                 return 0;
435
436         np->addrs = adr;
437         np->n_addrs = n_addrs;
438
439         for (i = 0; i < n_addrs; i++) {
440                 adr[i].space = pci_addrs[i].addr.a_hi;
441                 adr[i].address = pci_addrs[i].addr.a_lo |
442                         ((u64)pci_addrs[i].addr.a_mid << 32);
443                 adr[i].size = pci_addrs[i].size_lo;
444         }
445
446         return 0;
447 }
448
449 static int __init interpret_dbdma_props(struct device_node *np,
450                                         unsigned long *mem_start,
451                                         int naddrc, int nsizec,
452                                         int measure_only)
453 {
454         struct reg_property32 *rp;
455         struct address_range *adr;
456         unsigned long base_address;
457         int i, l;
458         struct device_node *db;
459
460         base_address = 0;
461         if (!measure_only) {
462                 for (db = np->parent; db != NULL; db = db->parent) {
463                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
464                                 base_address = db->addrs[0].address;
465                                 break;
466                         }
467                 }
468         }
469
470         rp = (struct reg_property32 *) get_property(np, "reg", &l);
471         if (rp != 0 && l >= sizeof(struct reg_property32)) {
472                 i = 0;
473                 adr = (struct address_range *) (*mem_start);
474                 while ((l -= sizeof(struct reg_property32)) >= 0) {
475                         if (!measure_only) {
476                                 adr[i].space = 2;
477                                 adr[i].address = rp[i].address + base_address;
478                                 adr[i].size = rp[i].size;
479                         }
480                         ++i;
481                 }
482                 np->addrs = adr;
483                 np->n_addrs = i;
484                 (*mem_start) += i * sizeof(struct address_range);
485         }
486
487         return 0;
488 }
489
490 static int __init interpret_macio_props(struct device_node *np,
491                                         unsigned long *mem_start,
492                                         int naddrc, int nsizec,
493                                         int measure_only)
494 {
495         struct reg_property32 *rp;
496         struct address_range *adr;
497         unsigned long base_address;
498         int i, l;
499         struct device_node *db;
500
501         base_address = 0;
502         if (!measure_only) {
503                 for (db = np->parent; db != NULL; db = db->parent) {
504                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
505                                 base_address = db->addrs[0].address;
506                                 break;
507                         }
508                 }
509         }
510
511         rp = (struct reg_property32 *) get_property(np, "reg", &l);
512         if (rp != 0 && l >= sizeof(struct reg_property32)) {
513                 i = 0;
514                 adr = (struct address_range *) (*mem_start);
515                 while ((l -= sizeof(struct reg_property32)) >= 0) {
516                         if (!measure_only) {
517                                 adr[i].space = 2;
518                                 adr[i].address = rp[i].address + base_address;
519                                 adr[i].size = rp[i].size;
520                         }
521                         ++i;
522                 }
523                 np->addrs = adr;
524                 np->n_addrs = i;
525                 (*mem_start) += i * sizeof(struct address_range);
526         }
527
528         return 0;
529 }
530
531 static int __init interpret_isa_props(struct device_node *np,
532                                       unsigned long *mem_start,
533                                       int naddrc, int nsizec,
534                                       int measure_only)
535 {
536         struct isa_reg_property *rp;
537         struct address_range *adr;
538         int i, l;
539
540         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
541         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
542                 i = 0;
543                 adr = (struct address_range *) (*mem_start);
544                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
545                         if (!measure_only) {
546                                 adr[i].space = rp[i].space;
547                                 adr[i].address = rp[i].address;
548                                 adr[i].size = rp[i].size;
549                         }
550                         ++i;
551                 }
552                 np->addrs = adr;
553                 np->n_addrs = i;
554                 (*mem_start) += i * sizeof(struct address_range);
555         }
556
557         return 0;
558 }
559
560 static int __init interpret_root_props(struct device_node *np,
561                                        unsigned long *mem_start,
562                                        int naddrc, int nsizec,
563                                        int measure_only)
564 {
565         struct address_range *adr;
566         int i, l;
567         unsigned int *rp;
568         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
569
570         rp = (unsigned int *) get_property(np, "linux,usable-memory", &l);
571         if (rp == NULL)
572                 rp = (unsigned int *) get_property(np, "reg", &l);
573
574         if (rp != 0 && l >= rpsize) {
575                 i = 0;
576                 adr = (struct address_range *) (*mem_start);
577                 while ((l -= rpsize) >= 0) {
578                         if (!measure_only) {
579                                 adr[i].space = 0;
580                                 adr[i].address = rp[naddrc - 1];
581                                 adr[i].size = rp[naddrc + nsizec - 1];
582                         }
583                         ++i;
584                         rp += naddrc + nsizec;
585                 }
586                 np->addrs = adr;
587                 np->n_addrs = i;
588                 (*mem_start) += i * sizeof(struct address_range);
589         }
590
591         return 0;
592 }
593
594 static int __devinit finish_node(struct device_node *np,
595                                  unsigned long *mem_start,
596                                  interpret_func *ifunc,
597                                  int naddrc, int nsizec,
598                                  int measure_only)
599 {
600         struct device_node *child;
601         int *ip, rc = 0;
602
603         /* get the device addresses and interrupts */
604         if (ifunc != NULL)
605                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
606         if (rc)
607                 goto out;
608
609         rc = finish_node_interrupts(np, mem_start, measure_only);
610         if (rc)
611                 goto out;
612
613         /* Look for #address-cells and #size-cells properties. */
614         ip = (int *) get_property(np, "#address-cells", NULL);
615         if (ip != NULL)
616                 naddrc = *ip;
617         ip = (int *) get_property(np, "#size-cells", NULL);
618         if (ip != NULL)
619                 nsizec = *ip;
620
621         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
622                 ifunc = interpret_root_props;
623         else if (np->type == 0)
624                 ifunc = NULL;
625         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
626                 ifunc = interpret_pci_props;
627         else if (!strcmp(np->type, "dbdma"))
628                 ifunc = interpret_dbdma_props;
629         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
630                 ifunc = interpret_macio_props;
631         else if (!strcmp(np->type, "isa"))
632                 ifunc = interpret_isa_props;
633         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
634                 ifunc = interpret_root_props;
635         else if (!((ifunc == interpret_dbdma_props
636                     || ifunc == interpret_macio_props)
637                    && (!strcmp(np->type, "escc")
638                        || !strcmp(np->type, "media-bay"))))
639                 ifunc = NULL;
640
641         for (child = np->child; child != NULL; child = child->sibling) {
642                 rc = finish_node(child, mem_start, ifunc,
643                                  naddrc, nsizec, measure_only);
644                 if (rc)
645                         goto out;
646         }
647 out:
648         return rc;
649 }
650
651 static void __init scan_interrupt_controllers(void)
652 {
653         struct device_node *np;
654         int n = 0;
655         char *name, *ic;
656         int iclen;
657
658         for (np = allnodes; np != NULL; np = np->allnext) {
659                 ic = get_property(np, "interrupt-controller", &iclen);
660                 name = get_property(np, "name", NULL);
661                 /* checking iclen makes sure we don't get a false
662                    match on /chosen.interrupt_controller */
663                 if ((name != NULL
664                      && strcmp(name, "interrupt-controller") == 0)
665                     || (ic != NULL && iclen == 0
666                         && strcmp(name, "AppleKiwi"))) {
667                         if (n == 0)
668                                 dflt_interrupt_controller = np;
669                         ++n;
670                 }
671         }
672         num_interrupt_controllers = n;
673 }
674
675 /**
676  * finish_device_tree is called once things are running normally
677  * (i.e. with text and data mapped to the address they were linked at).
678  * It traverses the device tree and fills in some of the additional,
679  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
680  * mapping is also initialized at this point.
681  */
682 void __init finish_device_tree(void)
683 {
684         unsigned long start, end, size = 0;
685
686         DBG(" -> finish_device_tree\n");
687
688 #ifdef CONFIG_PPC64
689         /* Initialize virtual IRQ map */
690         virt_irq_init();
691 #endif
692         scan_interrupt_controllers();
693
694         /*
695          * Finish device-tree (pre-parsing some properties etc...)
696          * We do this in 2 passes. One with "measure_only" set, which
697          * will only measure the amount of memory needed, then we can
698          * allocate that memory, and call finish_node again. However,
699          * we must be careful as most routines will fail nowadays when
700          * prom_alloc() returns 0, so we must make sure our first pass
701          * doesn't start at 0. We pre-initialize size to 16 for that
702          * reason and then remove those additional 16 bytes
703          */
704         size = 16;
705         finish_node(allnodes, &size, NULL, 0, 0, 1);
706         size -= 16;
707         end = start = (unsigned long) __va(lmb_alloc(size, 128));
708         finish_node(allnodes, &end, NULL, 0, 0, 0);
709         BUG_ON(end != start + size);
710
711         DBG(" <- finish_device_tree\n");
712 }
713
714 static inline char *find_flat_dt_string(u32 offset)
715 {
716         return ((char *)initial_boot_params) +
717                 initial_boot_params->off_dt_strings + offset;
718 }
719
720 /**
721  * This function is used to scan the flattened device-tree, it is
722  * used to extract the memory informations at boot before we can
723  * unflatten the tree
724  */
725 int __init of_scan_flat_dt(int (*it)(unsigned long node,
726                                      const char *uname, int depth,
727                                      void *data),
728                            void *data)
729 {
730         unsigned long p = ((unsigned long)initial_boot_params) +
731                 initial_boot_params->off_dt_struct;
732         int rc = 0;
733         int depth = -1;
734
735         do {
736                 u32 tag = *((u32 *)p);
737                 char *pathp;
738                 
739                 p += 4;
740                 if (tag == OF_DT_END_NODE) {
741                         depth --;
742                         continue;
743                 }
744                 if (tag == OF_DT_NOP)
745                         continue;
746                 if (tag == OF_DT_END)
747                         break;
748                 if (tag == OF_DT_PROP) {
749                         u32 sz = *((u32 *)p);
750                         p += 8;
751                         if (initial_boot_params->version < 0x10)
752                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
753                         p += sz;
754                         p = _ALIGN(p, 4);
755                         continue;
756                 }
757                 if (tag != OF_DT_BEGIN_NODE) {
758                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
759                                " device tree !\n", tag);
760                         return -EINVAL;
761                 }
762                 depth++;
763                 pathp = (char *)p;
764                 p = _ALIGN(p + strlen(pathp) + 1, 4);
765                 if ((*pathp) == '/') {
766                         char *lp, *np;
767                         for (lp = NULL, np = pathp; *np; np++)
768                                 if ((*np) == '/')
769                                         lp = np+1;
770                         if (lp != NULL)
771                                 pathp = lp;
772                 }
773                 rc = it(p, pathp, depth, data);
774                 if (rc != 0)
775                         break;          
776         } while(1);
777
778         return rc;
779 }
780
781 /**
782  * This  function can be used within scan_flattened_dt callback to get
783  * access to properties
784  */
785 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
786                                  unsigned long *size)
787 {
788         unsigned long p = node;
789
790         do {
791                 u32 tag = *((u32 *)p);
792                 u32 sz, noff;
793                 const char *nstr;
794
795                 p += 4;
796                 if (tag == OF_DT_NOP)
797                         continue;
798                 if (tag != OF_DT_PROP)
799                         return NULL;
800
801                 sz = *((u32 *)p);
802                 noff = *((u32 *)(p + 4));
803                 p += 8;
804                 if (initial_boot_params->version < 0x10)
805                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
806
807                 nstr = find_flat_dt_string(noff);
808                 if (nstr == NULL) {
809                         printk(KERN_WARNING "Can't find property index"
810                                " name !\n");
811                         return NULL;
812                 }
813                 if (strcmp(name, nstr) == 0) {
814                         if (size)
815                                 *size = sz;
816                         return (void *)p;
817                 }
818                 p += sz;
819                 p = _ALIGN(p, 4);
820         } while(1);
821 }
822
823 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
824                                        unsigned long align)
825 {
826         void *res;
827
828         *mem = _ALIGN(*mem, align);
829         res = (void *)*mem;
830         *mem += size;
831
832         return res;
833 }
834
835 static unsigned long __init unflatten_dt_node(unsigned long mem,
836                                               unsigned long *p,
837                                               struct device_node *dad,
838                                               struct device_node ***allnextpp,
839                                               unsigned long fpsize)
840 {
841         struct device_node *np;
842         struct property *pp, **prev_pp = NULL;
843         char *pathp;
844         u32 tag;
845         unsigned int l, allocl;
846         int has_name = 0;
847         int new_format = 0;
848
849         tag = *((u32 *)(*p));
850         if (tag != OF_DT_BEGIN_NODE) {
851                 printk("Weird tag at start of node: %x\n", tag);
852                 return mem;
853         }
854         *p += 4;
855         pathp = (char *)*p;
856         l = allocl = strlen(pathp) + 1;
857         *p = _ALIGN(*p + l, 4);
858
859         /* version 0x10 has a more compact unit name here instead of the full
860          * path. we accumulate the full path size using "fpsize", we'll rebuild
861          * it later. We detect this because the first character of the name is
862          * not '/'.
863          */
864         if ((*pathp) != '/') {
865                 new_format = 1;
866                 if (fpsize == 0) {
867                         /* root node: special case. fpsize accounts for path
868                          * plus terminating zero. root node only has '/', so
869                          * fpsize should be 2, but we want to avoid the first
870                          * level nodes to have two '/' so we use fpsize 1 here
871                          */
872                         fpsize = 1;
873                         allocl = 2;
874                 } else {
875                         /* account for '/' and path size minus terminal 0
876                          * already in 'l'
877                          */
878                         fpsize += l;
879                         allocl = fpsize;
880                 }
881         }
882
883
884         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
885                                 __alignof__(struct device_node));
886         if (allnextpp) {
887                 memset(np, 0, sizeof(*np));
888                 np->full_name = ((char*)np) + sizeof(struct device_node);
889                 if (new_format) {
890                         char *p = np->full_name;
891                         /* rebuild full path for new format */
892                         if (dad && dad->parent) {
893                                 strcpy(p, dad->full_name);
894 #ifdef DEBUG
895                                 if ((strlen(p) + l + 1) != allocl) {
896                                         DBG("%s: p: %d, l: %d, a: %d\n",
897                                             pathp, strlen(p), l, allocl);
898                                 }
899 #endif
900                                 p += strlen(p);
901                         }
902                         *(p++) = '/';
903                         memcpy(p, pathp, l);
904                 } else
905                         memcpy(np->full_name, pathp, l);
906                 prev_pp = &np->properties;
907                 **allnextpp = np;
908                 *allnextpp = &np->allnext;
909                 if (dad != NULL) {
910                         np->parent = dad;
911                         /* we temporarily use the next field as `last_child'*/
912                         if (dad->next == 0)
913                                 dad->child = np;
914                         else
915                                 dad->next->sibling = np;
916                         dad->next = np;
917                 }
918                 kref_init(&np->kref);
919         }
920         while(1) {
921                 u32 sz, noff;
922                 char *pname;
923
924                 tag = *((u32 *)(*p));
925                 if (tag == OF_DT_NOP) {
926                         *p += 4;
927                         continue;
928                 }
929                 if (tag != OF_DT_PROP)
930                         break;
931                 *p += 4;
932                 sz = *((u32 *)(*p));
933                 noff = *((u32 *)((*p) + 4));
934                 *p += 8;
935                 if (initial_boot_params->version < 0x10)
936                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
937
938                 pname = find_flat_dt_string(noff);
939                 if (pname == NULL) {
940                         printk("Can't find property name in list !\n");
941                         break;
942                 }
943                 if (strcmp(pname, "name") == 0)
944                         has_name = 1;
945                 l = strlen(pname) + 1;
946                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
947                                         __alignof__(struct property));
948                 if (allnextpp) {
949                         if (strcmp(pname, "linux,phandle") == 0) {
950                                 np->node = *((u32 *)*p);
951                                 if (np->linux_phandle == 0)
952                                         np->linux_phandle = np->node;
953                         }
954                         if (strcmp(pname, "ibm,phandle") == 0)
955                                 np->linux_phandle = *((u32 *)*p);
956                         pp->name = pname;
957                         pp->length = sz;
958                         pp->value = (void *)*p;
959                         *prev_pp = pp;
960                         prev_pp = &pp->next;
961                 }
962                 *p = _ALIGN((*p) + sz, 4);
963         }
964         /* with version 0x10 we may not have the name property, recreate
965          * it here from the unit name if absent
966          */
967         if (!has_name) {
968                 char *p = pathp, *ps = pathp, *pa = NULL;
969                 int sz;
970
971                 while (*p) {
972                         if ((*p) == '@')
973                                 pa = p;
974                         if ((*p) == '/')
975                                 ps = p + 1;
976                         p++;
977                 }
978                 if (pa < ps)
979                         pa = p;
980                 sz = (pa - ps) + 1;
981                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
982                                         __alignof__(struct property));
983                 if (allnextpp) {
984                         pp->name = "name";
985                         pp->length = sz;
986                         pp->value = (unsigned char *)(pp + 1);
987                         *prev_pp = pp;
988                         prev_pp = &pp->next;
989                         memcpy(pp->value, ps, sz - 1);
990                         ((char *)pp->value)[sz - 1] = 0;
991                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
992                 }
993         }
994         if (allnextpp) {
995                 *prev_pp = NULL;
996                 np->name = get_property(np, "name", NULL);
997                 np->type = get_property(np, "device_type", NULL);
998
999                 if (!np->name)
1000                         np->name = "<NULL>";
1001                 if (!np->type)
1002                         np->type = "<NULL>";
1003         }
1004         while (tag == OF_DT_BEGIN_NODE) {
1005                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1006                 tag = *((u32 *)(*p));
1007         }
1008         if (tag != OF_DT_END_NODE) {
1009                 printk("Weird tag at end of node: %x\n", tag);
1010                 return mem;
1011         }
1012         *p += 4;
1013         return mem;
1014 }
1015
1016
1017 /**
1018  * unflattens the device-tree passed by the firmware, creating the
1019  * tree of struct device_node. It also fills the "name" and "type"
1020  * pointers of the nodes so the normal device-tree walking functions
1021  * can be used (this used to be done by finish_device_tree)
1022  */
1023 void __init unflatten_device_tree(void)
1024 {
1025         unsigned long start, mem, size;
1026         struct device_node **allnextp = &allnodes;
1027         char *p = NULL;
1028         int l = 0;
1029
1030         DBG(" -> unflatten_device_tree()\n");
1031
1032         /* First pass, scan for size */
1033         start = ((unsigned long)initial_boot_params) +
1034                 initial_boot_params->off_dt_struct;
1035         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1036         size = (size | 3) + 1;
1037
1038         DBG("  size is %lx, allocating...\n", size);
1039
1040         /* Allocate memory for the expanded device tree */
1041         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1042         if (!mem) {
1043                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1044                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1045         }
1046         mem = (unsigned long) __va(mem);
1047
1048         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1049
1050         DBG("  unflattening %lx...\n", mem);
1051
1052         /* Second pass, do actual unflattening */
1053         start = ((unsigned long)initial_boot_params) +
1054                 initial_boot_params->off_dt_struct;
1055         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1056         if (*((u32 *)start) != OF_DT_END)
1057                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1058         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1059                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1060                        ((u32 *)mem)[size / 4] );
1061         *allnextp = NULL;
1062
1063         /* Get pointer to OF "/chosen" node for use everywhere */
1064         of_chosen = of_find_node_by_path("/chosen");
1065         if (of_chosen == NULL)
1066                 of_chosen = of_find_node_by_path("/chosen@0");
1067
1068         /* Retreive command line */
1069         if (of_chosen != NULL) {
1070                 p = (char *)get_property(of_chosen, "bootargs", &l);
1071                 if (p != NULL && l > 0)
1072                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1073         }
1074 #ifdef CONFIG_CMDLINE
1075         if (l == 0 || (l == 1 && (*p) == 0))
1076                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1077 #endif /* CONFIG_CMDLINE */
1078
1079         DBG("Command line is: %s\n", cmd_line);
1080
1081         DBG(" <- unflatten_device_tree()\n");
1082 }
1083
1084
1085 static int __init early_init_dt_scan_cpus(unsigned long node,
1086                                           const char *uname, int depth, void *data)
1087 {
1088         u32 *prop;
1089         unsigned long size;
1090         char *type = of_get_flat_dt_prop(node, "device_type", &size);
1091
1092         /* We are scanning "cpu" nodes only */
1093         if (type == NULL || strcmp(type, "cpu") != 0)
1094                 return 0;
1095
1096         boot_cpuid = 0;
1097         boot_cpuid_phys = 0;
1098         if (initial_boot_params && initial_boot_params->version >= 2) {
1099                 /* version 2 of the kexec param format adds the phys cpuid
1100                  * of booted proc.
1101                  */
1102                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1103         } else {
1104                 /* Check if it's the boot-cpu, set it's hw index now */
1105                 if (of_get_flat_dt_prop(node,
1106                                         "linux,boot-cpu", NULL) != NULL) {
1107                         prop = of_get_flat_dt_prop(node, "reg", NULL);
1108                         if (prop != NULL)
1109                                 boot_cpuid_phys = *prop;
1110                 }
1111         }
1112         set_hard_smp_processor_id(0, boot_cpuid_phys);
1113
1114 #ifdef CONFIG_ALTIVEC
1115         /* Check if we have a VMX and eventually update CPU features */
1116         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1117         if (prop && (*prop) > 0) {
1118                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1119                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1120         }
1121
1122         /* Same goes for Apple's "altivec" property */
1123         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1124         if (prop) {
1125                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1126                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1127         }
1128 #endif /* CONFIG_ALTIVEC */
1129
1130 #ifdef CONFIG_PPC_PSERIES
1131         /*
1132          * Check for an SMT capable CPU and set the CPU feature. We do
1133          * this by looking at the size of the ibm,ppc-interrupt-server#s
1134          * property
1135          */
1136         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1137                                        &size);
1138         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1139         if (prop && ((size / sizeof(u32)) > 1))
1140                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1141 #endif
1142
1143         return 0;
1144 }
1145
1146 static int __init early_init_dt_scan_chosen(unsigned long node,
1147                                             const char *uname, int depth, void *data)
1148 {
1149         u32 *prop;
1150         unsigned long *lprop;
1151
1152         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1153
1154         if (depth != 1 ||
1155             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1156                 return 0;
1157
1158         /* get platform type */
1159         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1160         if (prop == NULL)
1161                 return 0;
1162 #ifdef CONFIG_PPC_MULTIPLATFORM
1163         _machine = *prop;
1164 #endif
1165
1166 #ifdef CONFIG_PPC64
1167         /* check if iommu is forced on or off */
1168         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1169                 iommu_is_off = 1;
1170         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1171                 iommu_force_on = 1;
1172 #endif
1173
1174         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1175         if (lprop)
1176                 memory_limit = *lprop;
1177
1178 #ifdef CONFIG_PPC64
1179         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1180         if (lprop)
1181                 tce_alloc_start = *lprop;
1182         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1183         if (lprop)
1184                 tce_alloc_end = *lprop;
1185 #endif
1186
1187 #ifdef CONFIG_PPC_RTAS
1188         /* To help early debugging via the front panel, we retreive a minimal
1189          * set of RTAS infos now if available
1190          */
1191         {
1192                 u64 *basep, *entryp;
1193
1194                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1195                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1196                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1197                 if (basep && entryp && prop) {
1198                         rtas.base = *basep;
1199                         rtas.entry = *entryp;
1200                         rtas.size = *prop;
1201                 }
1202         }
1203 #endif /* CONFIG_PPC_RTAS */
1204
1205 #ifdef CONFIG_KEXEC
1206        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1207        if (lprop)
1208                crashk_res.start = *lprop;
1209
1210        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1211        if (lprop)
1212                crashk_res.end = crashk_res.start + *lprop - 1;
1213 #endif
1214
1215         /* break now */
1216         return 1;
1217 }
1218
1219 static int __init early_init_dt_scan_root(unsigned long node,
1220                                           const char *uname, int depth, void *data)
1221 {
1222         u32 *prop;
1223
1224         if (depth != 0)
1225                 return 0;
1226
1227         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1228         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1229         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1230
1231         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1232         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1233         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1234         
1235         /* break now */
1236         return 1;
1237 }
1238
1239 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1240 {
1241         cell_t *p = *cellp;
1242         unsigned long r;
1243
1244         /* Ignore more than 2 cells */
1245         while (s > sizeof(unsigned long) / 4) {
1246                 p++;
1247                 s--;
1248         }
1249         r = *p++;
1250 #ifdef CONFIG_PPC64
1251         if (s > 1) {
1252                 r <<= 32;
1253                 r |= *(p++);
1254                 s--;
1255         }
1256 #endif
1257
1258         *cellp = p;
1259         return r;
1260 }
1261
1262
1263 static int __init early_init_dt_scan_memory(unsigned long node,
1264                                             const char *uname, int depth, void *data)
1265 {
1266         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1267         cell_t *reg, *endp;
1268         unsigned long l;
1269
1270         /* We are scanning "memory" nodes only */
1271         if (type == NULL) {
1272                 /*
1273                  * The longtrail doesn't have a device_type on the
1274                  * /memory node, so look for the node called /memory@0.
1275                  */
1276                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1277                         return 0;
1278         } else if (strcmp(type, "memory") != 0)
1279                 return 0;
1280
1281         reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1282         if (reg == NULL)
1283                 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1284         if (reg == NULL)
1285                 return 0;
1286
1287         endp = reg + (l / sizeof(cell_t));
1288
1289         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1290             uname, l, reg[0], reg[1], reg[2], reg[3]);
1291
1292         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1293                 unsigned long base, size;
1294
1295                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1296                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1297
1298                 if (size == 0)
1299                         continue;
1300                 DBG(" - %lx ,  %lx\n", base, size);
1301 #ifdef CONFIG_PPC64
1302                 if (iommu_is_off) {
1303                         if (base >= 0x80000000ul)
1304                                 continue;
1305                         if ((base + size) > 0x80000000ul)
1306                                 size = 0x80000000ul - base;
1307                 }
1308 #endif
1309                 lmb_add(base, size);
1310         }
1311         return 0;
1312 }
1313
1314 static void __init early_reserve_mem(void)
1315 {
1316         unsigned long base, size;
1317         unsigned long *reserve_map;
1318
1319         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1320                                         initial_boot_params->off_mem_rsvmap);
1321         while (1) {
1322                 base = *(reserve_map++);
1323                 size = *(reserve_map++);
1324                 if (size == 0)
1325                         break;
1326                 DBG("reserving: %lx -> %lx\n", base, size);
1327                 lmb_reserve(base, size);
1328         }
1329
1330 #if 0
1331         DBG("memory reserved, lmbs :\n");
1332         lmb_dump_all();
1333 #endif
1334 }
1335
1336 void __init early_init_devtree(void *params)
1337 {
1338         DBG(" -> early_init_devtree()\n");
1339
1340         /* Setup flat device-tree pointer */
1341         initial_boot_params = params;
1342
1343         /* Retrieve various informations from the /chosen node of the
1344          * device-tree, including the platform type, initrd location and
1345          * size, TCE reserve, and more ...
1346          */
1347         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1348
1349         /* Scan memory nodes and rebuild LMBs */
1350         lmb_init();
1351         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1352         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1353         lmb_enforce_memory_limit(memory_limit);
1354         lmb_analyze();
1355
1356         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1357
1358         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1359         lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1360 #ifdef CONFIG_CRASH_DUMP
1361         lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1362 #endif
1363         early_reserve_mem();
1364
1365         DBG("Scanning CPUs ...\n");
1366
1367         /* Retreive CPU related informations from the flat tree
1368          * (altivec support, boot CPU ID, ...)
1369          */
1370         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1371
1372         DBG(" <- early_init_devtree()\n");
1373 }
1374
1375 #undef printk
1376
1377 int
1378 prom_n_addr_cells(struct device_node* np)
1379 {
1380         int* ip;
1381         do {
1382                 if (np->parent)
1383                         np = np->parent;
1384                 ip = (int *) get_property(np, "#address-cells", NULL);
1385                 if (ip != NULL)
1386                         return *ip;
1387         } while (np->parent);
1388         /* No #address-cells property for the root node, default to 1 */
1389         return 1;
1390 }
1391 EXPORT_SYMBOL(prom_n_addr_cells);
1392
1393 int
1394 prom_n_size_cells(struct device_node* np)
1395 {
1396         int* ip;
1397         do {
1398                 if (np->parent)
1399                         np = np->parent;
1400                 ip = (int *) get_property(np, "#size-cells", NULL);
1401                 if (ip != NULL)
1402                         return *ip;
1403         } while (np->parent);
1404         /* No #size-cells property for the root node, default to 1 */
1405         return 1;
1406 }
1407 EXPORT_SYMBOL(prom_n_size_cells);
1408
1409 /**
1410  * Work out the sense (active-low level / active-high edge)
1411  * of each interrupt from the device tree.
1412  */
1413 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1414 {
1415         struct device_node *np;
1416         int i, j;
1417
1418         /* default to level-triggered */
1419         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1420
1421         for (np = allnodes; np != 0; np = np->allnext) {
1422                 for (j = 0; j < np->n_intrs; j++) {
1423                         i = np->intrs[j].line;
1424                         if (i >= off && i < max)
1425                                 senses[i-off] = np->intrs[j].sense;
1426                 }
1427         }
1428 }
1429
1430 /**
1431  * Construct and return a list of the device_nodes with a given name.
1432  */
1433 struct device_node *find_devices(const char *name)
1434 {
1435         struct device_node *head, **prevp, *np;
1436
1437         prevp = &head;
1438         for (np = allnodes; np != 0; np = np->allnext) {
1439                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1440                         *prevp = np;
1441                         prevp = &np->next;
1442                 }
1443         }
1444         *prevp = NULL;
1445         return head;
1446 }
1447 EXPORT_SYMBOL(find_devices);
1448
1449 /**
1450  * Construct and return a list of the device_nodes with a given type.
1451  */
1452 struct device_node *find_type_devices(const char *type)
1453 {
1454         struct device_node *head, **prevp, *np;
1455
1456         prevp = &head;
1457         for (np = allnodes; np != 0; np = np->allnext) {
1458                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1459                         *prevp = np;
1460                         prevp = &np->next;
1461                 }
1462         }
1463         *prevp = NULL;
1464         return head;
1465 }
1466 EXPORT_SYMBOL(find_type_devices);
1467
1468 /**
1469  * Returns all nodes linked together
1470  */
1471 struct device_node *find_all_nodes(void)
1472 {
1473         struct device_node *head, **prevp, *np;
1474
1475         prevp = &head;
1476         for (np = allnodes; np != 0; np = np->allnext) {
1477                 *prevp = np;
1478                 prevp = &np->next;
1479         }
1480         *prevp = NULL;
1481         return head;
1482 }
1483 EXPORT_SYMBOL(find_all_nodes);
1484
1485 /** Checks if the given "compat" string matches one of the strings in
1486  * the device's "compatible" property
1487  */
1488 int device_is_compatible(struct device_node *device, const char *compat)
1489 {
1490         const char* cp;
1491         int cplen, l;
1492
1493         cp = (char *) get_property(device, "compatible", &cplen);
1494         if (cp == NULL)
1495                 return 0;
1496         while (cplen > 0) {
1497                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1498                         return 1;
1499                 l = strlen(cp) + 1;
1500                 cp += l;
1501                 cplen -= l;
1502         }
1503
1504         return 0;
1505 }
1506 EXPORT_SYMBOL(device_is_compatible);
1507
1508
1509 /**
1510  * Indicates whether the root node has a given value in its
1511  * compatible property.
1512  */
1513 int machine_is_compatible(const char *compat)
1514 {
1515         struct device_node *root;
1516         int rc = 0;
1517
1518         root = of_find_node_by_path("/");
1519         if (root) {
1520                 rc = device_is_compatible(root, compat);
1521                 of_node_put(root);
1522         }
1523         return rc;
1524 }
1525 EXPORT_SYMBOL(machine_is_compatible);
1526
1527 /**
1528  * Construct and return a list of the device_nodes with a given type
1529  * and compatible property.
1530  */
1531 struct device_node *find_compatible_devices(const char *type,
1532                                             const char *compat)
1533 {
1534         struct device_node *head, **prevp, *np;
1535
1536         prevp = &head;
1537         for (np = allnodes; np != 0; np = np->allnext) {
1538                 if (type != NULL
1539                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1540                         continue;
1541                 if (device_is_compatible(np, compat)) {
1542                         *prevp = np;
1543                         prevp = &np->next;
1544                 }
1545         }
1546         *prevp = NULL;
1547         return head;
1548 }
1549 EXPORT_SYMBOL(find_compatible_devices);
1550
1551 /**
1552  * Find the device_node with a given full_name.
1553  */
1554 struct device_node *find_path_device(const char *path)
1555 {
1556         struct device_node *np;
1557
1558         for (np = allnodes; np != 0; np = np->allnext)
1559                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1560                         return np;
1561         return NULL;
1562 }
1563 EXPORT_SYMBOL(find_path_device);
1564
1565 /*******
1566  *
1567  * New implementation of the OF "find" APIs, return a refcounted
1568  * object, call of_node_put() when done.  The device tree and list
1569  * are protected by a rw_lock.
1570  *
1571  * Note that property management will need some locking as well,
1572  * this isn't dealt with yet.
1573  *
1574  *******/
1575
1576 /**
1577  *      of_find_node_by_name - Find a node by its "name" property
1578  *      @from:  The node to start searching from or NULL, the node
1579  *              you pass will not be searched, only the next one
1580  *              will; typically, you pass what the previous call
1581  *              returned. of_node_put() will be called on it
1582  *      @name:  The name string to match against
1583  *
1584  *      Returns a node pointer with refcount incremented, use
1585  *      of_node_put() on it when done.
1586  */
1587 struct device_node *of_find_node_by_name(struct device_node *from,
1588         const char *name)
1589 {
1590         struct device_node *np;
1591
1592         read_lock(&devtree_lock);
1593         np = from ? from->allnext : allnodes;
1594         for (; np != 0; np = np->allnext)
1595                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1596                     && of_node_get(np))
1597                         break;
1598         if (from)
1599                 of_node_put(from);
1600         read_unlock(&devtree_lock);
1601         return np;
1602 }
1603 EXPORT_SYMBOL(of_find_node_by_name);
1604
1605 /**
1606  *      of_find_node_by_type - Find a node by its "device_type" property
1607  *      @from:  The node to start searching from or NULL, the node
1608  *              you pass will not be searched, only the next one
1609  *              will; typically, you pass what the previous call
1610  *              returned. of_node_put() will be called on it
1611  *      @name:  The type string to match against
1612  *
1613  *      Returns a node pointer with refcount incremented, use
1614  *      of_node_put() on it when done.
1615  */
1616 struct device_node *of_find_node_by_type(struct device_node *from,
1617         const char *type)
1618 {
1619         struct device_node *np;
1620
1621         read_lock(&devtree_lock);
1622         np = from ? from->allnext : allnodes;
1623         for (; np != 0; np = np->allnext)
1624                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1625                     && of_node_get(np))
1626                         break;
1627         if (from)
1628                 of_node_put(from);
1629         read_unlock(&devtree_lock);
1630         return np;
1631 }
1632 EXPORT_SYMBOL(of_find_node_by_type);
1633
1634 /**
1635  *      of_find_compatible_node - Find a node based on type and one of the
1636  *                                tokens in its "compatible" property
1637  *      @from:          The node to start searching from or NULL, the node
1638  *                      you pass will not be searched, only the next one
1639  *                      will; typically, you pass what the previous call
1640  *                      returned. of_node_put() will be called on it
1641  *      @type:          The type string to match "device_type" or NULL to ignore
1642  *      @compatible:    The string to match to one of the tokens in the device
1643  *                      "compatible" list.
1644  *
1645  *      Returns a node pointer with refcount incremented, use
1646  *      of_node_put() on it when done.
1647  */
1648 struct device_node *of_find_compatible_node(struct device_node *from,
1649         const char *type, const char *compatible)
1650 {
1651         struct device_node *np;
1652
1653         read_lock(&devtree_lock);
1654         np = from ? from->allnext : allnodes;
1655         for (; np != 0; np = np->allnext) {
1656                 if (type != NULL
1657                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1658                         continue;
1659                 if (device_is_compatible(np, compatible) && of_node_get(np))
1660                         break;
1661         }
1662         if (from)
1663                 of_node_put(from);
1664         read_unlock(&devtree_lock);
1665         return np;
1666 }
1667 EXPORT_SYMBOL(of_find_compatible_node);
1668
1669 /**
1670  *      of_find_node_by_path - Find a node matching a full OF path
1671  *      @path:  The full path to match
1672  *
1673  *      Returns a node pointer with refcount incremented, use
1674  *      of_node_put() on it when done.
1675  */
1676 struct device_node *of_find_node_by_path(const char *path)
1677 {
1678         struct device_node *np = allnodes;
1679
1680         read_lock(&devtree_lock);
1681         for (; np != 0; np = np->allnext) {
1682                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1683                     && of_node_get(np))
1684                         break;
1685         }
1686         read_unlock(&devtree_lock);
1687         return np;
1688 }
1689 EXPORT_SYMBOL(of_find_node_by_path);
1690
1691 /**
1692  *      of_find_node_by_phandle - Find a node given a phandle
1693  *      @handle:        phandle of the node to find
1694  *
1695  *      Returns a node pointer with refcount incremented, use
1696  *      of_node_put() on it when done.
1697  */
1698 struct device_node *of_find_node_by_phandle(phandle handle)
1699 {
1700         struct device_node *np;
1701
1702         read_lock(&devtree_lock);
1703         for (np = allnodes; np != 0; np = np->allnext)
1704                 if (np->linux_phandle == handle)
1705                         break;
1706         if (np)
1707                 of_node_get(np);
1708         read_unlock(&devtree_lock);
1709         return np;
1710 }
1711 EXPORT_SYMBOL(of_find_node_by_phandle);
1712
1713 /**
1714  *      of_find_all_nodes - Get next node in global list
1715  *      @prev:  Previous node or NULL to start iteration
1716  *              of_node_put() will be called on it
1717  *
1718  *      Returns a node pointer with refcount incremented, use
1719  *      of_node_put() on it when done.
1720  */
1721 struct device_node *of_find_all_nodes(struct device_node *prev)
1722 {
1723         struct device_node *np;
1724
1725         read_lock(&devtree_lock);
1726         np = prev ? prev->allnext : allnodes;
1727         for (; np != 0; np = np->allnext)
1728                 if (of_node_get(np))
1729                         break;
1730         if (prev)
1731                 of_node_put(prev);
1732         read_unlock(&devtree_lock);
1733         return np;
1734 }
1735 EXPORT_SYMBOL(of_find_all_nodes);
1736
1737 /**
1738  *      of_get_parent - Get a node's parent if any
1739  *      @node:  Node to get parent
1740  *
1741  *      Returns a node pointer with refcount incremented, use
1742  *      of_node_put() on it when done.
1743  */
1744 struct device_node *of_get_parent(const struct device_node *node)
1745 {
1746         struct device_node *np;
1747
1748         if (!node)
1749                 return NULL;
1750
1751         read_lock(&devtree_lock);
1752         np = of_node_get(node->parent);
1753         read_unlock(&devtree_lock);
1754         return np;
1755 }
1756 EXPORT_SYMBOL(of_get_parent);
1757
1758 /**
1759  *      of_get_next_child - Iterate a node childs
1760  *      @node:  parent node
1761  *      @prev:  previous child of the parent node, or NULL to get first
1762  *
1763  *      Returns a node pointer with refcount incremented, use
1764  *      of_node_put() on it when done.
1765  */
1766 struct device_node *of_get_next_child(const struct device_node *node,
1767         struct device_node *prev)
1768 {
1769         struct device_node *next;
1770
1771         read_lock(&devtree_lock);
1772         next = prev ? prev->sibling : node->child;
1773         for (; next != 0; next = next->sibling)
1774                 if (of_node_get(next))
1775                         break;
1776         if (prev)
1777                 of_node_put(prev);
1778         read_unlock(&devtree_lock);
1779         return next;
1780 }
1781 EXPORT_SYMBOL(of_get_next_child);
1782
1783 /**
1784  *      of_node_get - Increment refcount of a node
1785  *      @node:  Node to inc refcount, NULL is supported to
1786  *              simplify writing of callers
1787  *
1788  *      Returns node.
1789  */
1790 struct device_node *of_node_get(struct device_node *node)
1791 {
1792         if (node)
1793                 kref_get(&node->kref);
1794         return node;
1795 }
1796 EXPORT_SYMBOL(of_node_get);
1797
1798 static inline struct device_node * kref_to_device_node(struct kref *kref)
1799 {
1800         return container_of(kref, struct device_node, kref);
1801 }
1802
1803 /**
1804  *      of_node_release - release a dynamically allocated node
1805  *      @kref:  kref element of the node to be released
1806  *
1807  *      In of_node_put() this function is passed to kref_put()
1808  *      as the destructor.
1809  */
1810 static void of_node_release(struct kref *kref)
1811 {
1812         struct device_node *node = kref_to_device_node(kref);
1813         struct property *prop = node->properties;
1814
1815         if (!OF_IS_DYNAMIC(node))
1816                 return;
1817         while (prop) {
1818                 struct property *next = prop->next;
1819                 kfree(prop->name);
1820                 kfree(prop->value);
1821                 kfree(prop);
1822                 prop = next;
1823         }
1824         kfree(node->intrs);
1825         kfree(node->addrs);
1826         kfree(node->full_name);
1827         kfree(node->data);
1828         kfree(node);
1829 }
1830
1831 /**
1832  *      of_node_put - Decrement refcount of a node
1833  *      @node:  Node to dec refcount, NULL is supported to
1834  *              simplify writing of callers
1835  *
1836  */
1837 void of_node_put(struct device_node *node)
1838 {
1839         if (node)
1840                 kref_put(&node->kref, of_node_release);
1841 }
1842 EXPORT_SYMBOL(of_node_put);
1843
1844 /*
1845  * Plug a device node into the tree and global list.
1846  */
1847 void of_attach_node(struct device_node *np)
1848 {
1849         write_lock(&devtree_lock);
1850         np->sibling = np->parent->child;
1851         np->allnext = allnodes;
1852         np->parent->child = np;
1853         allnodes = np;
1854         write_unlock(&devtree_lock);
1855 }
1856
1857 /*
1858  * "Unplug" a node from the device tree.  The caller must hold
1859  * a reference to the node.  The memory associated with the node
1860  * is not freed until its refcount goes to zero.
1861  */
1862 void of_detach_node(const struct device_node *np)
1863 {
1864         struct device_node *parent;
1865
1866         write_lock(&devtree_lock);
1867
1868         parent = np->parent;
1869
1870         if (allnodes == np)
1871                 allnodes = np->allnext;
1872         else {
1873                 struct device_node *prev;
1874                 for (prev = allnodes;
1875                      prev->allnext != np;
1876                      prev = prev->allnext)
1877                         ;
1878                 prev->allnext = np->allnext;
1879         }
1880
1881         if (parent->child == np)
1882                 parent->child = np->sibling;
1883         else {
1884                 struct device_node *prevsib;
1885                 for (prevsib = np->parent->child;
1886                      prevsib->sibling != np;
1887                      prevsib = prevsib->sibling)
1888                         ;
1889                 prevsib->sibling = np->sibling;
1890         }
1891
1892         write_unlock(&devtree_lock);
1893 }
1894
1895 #ifdef CONFIG_PPC_PSERIES
1896 /*
1897  * Fix up the uninitialized fields in a new device node:
1898  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1899  *
1900  * A lot of boot-time code is duplicated here, because functions such
1901  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1902  * slab allocator.
1903  *
1904  * This should probably be split up into smaller chunks.
1905  */
1906
1907 static int of_finish_dynamic_node(struct device_node *node,
1908                                   unsigned long *unused1, int unused2,
1909                                   int unused3, int unused4)
1910 {
1911         struct device_node *parent = of_get_parent(node);
1912         int err = 0;
1913         phandle *ibm_phandle;
1914
1915         node->name = get_property(node, "name", NULL);
1916         node->type = get_property(node, "device_type", NULL);
1917
1918         if (!parent) {
1919                 err = -ENODEV;
1920                 goto out;
1921         }
1922
1923         /* We don't support that function on PowerMac, at least
1924          * not yet
1925          */
1926         if (_machine == PLATFORM_POWERMAC)
1927                 return -ENODEV;
1928
1929         /* fix up new node's linux_phandle field */
1930         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1931                 node->linux_phandle = *ibm_phandle;
1932
1933 out:
1934         of_node_put(parent);
1935         return err;
1936 }
1937
1938 static int prom_reconfig_notifier(struct notifier_block *nb,
1939                                   unsigned long action, void *node)
1940 {
1941         int err;
1942
1943         switch (action) {
1944         case PSERIES_RECONFIG_ADD:
1945                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1946                 if (err < 0) {
1947                         printk(KERN_ERR "finish_node returned %d\n", err);
1948                         err = NOTIFY_BAD;
1949                 }
1950                 break;
1951         default:
1952                 err = NOTIFY_DONE;
1953                 break;
1954         }
1955         return err;
1956 }
1957
1958 static struct notifier_block prom_reconfig_nb = {
1959         .notifier_call = prom_reconfig_notifier,
1960         .priority = 10, /* This one needs to run first */
1961 };
1962
1963 static int __init prom_reconfig_setup(void)
1964 {
1965         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1966 }
1967 __initcall(prom_reconfig_setup);
1968 #endif
1969
1970 /*
1971  * Find a property with a given name for a given node
1972  * and return the value.
1973  */
1974 unsigned char *get_property(struct device_node *np, const char *name,
1975                             int *lenp)
1976 {
1977         struct property *pp;
1978
1979         for (pp = np->properties; pp != 0; pp = pp->next)
1980                 if (strcmp(pp->name, name) == 0) {
1981                         if (lenp != 0)
1982                                 *lenp = pp->length;
1983                         return pp->value;
1984                 }
1985         return NULL;
1986 }
1987 EXPORT_SYMBOL(get_property);
1988
1989 /*
1990  * Add a property to a node
1991  */
1992 int prom_add_property(struct device_node* np, struct property* prop)
1993 {
1994         struct property **next;
1995
1996         prop->next = NULL;      
1997         write_lock(&devtree_lock);
1998         next = &np->properties;
1999         while (*next) {
2000                 if (strcmp(prop->name, (*next)->name) == 0) {
2001                         /* duplicate ! don't insert it */
2002                         write_unlock(&devtree_lock);
2003                         return -1;
2004                 }
2005                 next = &(*next)->next;
2006         }
2007         *next = prop;
2008         write_unlock(&devtree_lock);
2009
2010 #ifdef CONFIG_PROC_DEVICETREE
2011         /* try to add to proc as well if it was initialized */
2012         if (np->pde)
2013                 proc_device_tree_add_prop(np->pde, prop);
2014 #endif /* CONFIG_PROC_DEVICETREE */
2015
2016         return 0;
2017 }
2018
2019 /* I quickly hacked that one, check against spec ! */
2020 static inline unsigned long
2021 bus_space_to_resource_flags(unsigned int bus_space)
2022 {
2023         u8 space = (bus_space >> 24) & 0xf;
2024         if (space == 0)
2025                 space = 0x02;
2026         if (space == 0x02)
2027                 return IORESOURCE_MEM;
2028         else if (space == 0x01)
2029                 return IORESOURCE_IO;
2030         else {
2031                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2032                         bus_space);
2033                 return 0;
2034         }
2035 }
2036
2037 #ifdef CONFIG_PCI
2038 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2039                                                  struct address_range *range)
2040 {
2041         unsigned long mask;
2042         int i;
2043
2044         /* Check this one */
2045         mask = bus_space_to_resource_flags(range->space);
2046         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2047                 if ((pdev->resource[i].flags & mask) == mask &&
2048                         pdev->resource[i].start <= range->address &&
2049                         pdev->resource[i].end > range->address) {
2050                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2051                                         /* Add better message */
2052                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2053                                         return NULL;
2054                                 }
2055                                 break;
2056                         }
2057         }
2058         if (i == DEVICE_COUNT_RESOURCE)
2059                 return NULL;
2060         return &pdev->resource[i];
2061 }
2062
2063 /*
2064  * Request an OF device resource. Currently handles child of PCI devices,
2065  * or other nodes attached to the root node. Ultimately, put some
2066  * link to resources in the OF node.
2067  */
2068 struct resource *request_OF_resource(struct device_node* node, int index,
2069                                      const char* name_postfix)
2070 {
2071         struct pci_dev* pcidev;
2072         u8 pci_bus, pci_devfn;
2073         unsigned long iomask;
2074         struct device_node* nd;
2075         struct resource* parent;
2076         struct resource *res = NULL;
2077         int nlen, plen;
2078
2079         if (index >= node->n_addrs)
2080                 goto fail;
2081
2082         /* Sanity check on bus space */
2083         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2084         if (iomask & IORESOURCE_MEM)
2085                 parent = &iomem_resource;
2086         else if (iomask & IORESOURCE_IO)
2087                 parent = &ioport_resource;
2088         else
2089                 goto fail;
2090
2091         /* Find a PCI parent if any */
2092         nd = node;
2093         pcidev = NULL;
2094         while (nd) {
2095                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2096                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2097                 if (pcidev) break;
2098                 nd = nd->parent;
2099         }
2100         if (pcidev)
2101                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2102         if (!parent) {
2103                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2104                         node->name);
2105                 goto fail;
2106         }
2107
2108         res = __request_region(parent, node->addrs[index].address,
2109                                node->addrs[index].size, NULL);
2110         if (!res)
2111                 goto fail;
2112         nlen = strlen(node->name);
2113         plen = name_postfix ? strlen(name_postfix) : 0;
2114         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2115         if (res->name) {
2116                 strcpy((char *)res->name, node->name);
2117                 if (plen)
2118                         strcpy((char *)res->name+nlen, name_postfix);
2119         }
2120         return res;
2121 fail:
2122         return NULL;
2123 }
2124 EXPORT_SYMBOL(request_OF_resource);
2125
2126 int release_OF_resource(struct device_node *node, int index)
2127 {
2128         struct pci_dev* pcidev;
2129         u8 pci_bus, pci_devfn;
2130         unsigned long iomask, start, end;
2131         struct device_node* nd;
2132         struct resource* parent;
2133         struct resource *res = NULL;
2134
2135         if (index >= node->n_addrs)
2136                 return -EINVAL;
2137
2138         /* Sanity check on bus space */
2139         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2140         if (iomask & IORESOURCE_MEM)
2141                 parent = &iomem_resource;
2142         else if (iomask & IORESOURCE_IO)
2143                 parent = &ioport_resource;
2144         else
2145                 return -EINVAL;
2146
2147         /* Find a PCI parent if any */
2148         nd = node;
2149         pcidev = NULL;
2150         while(nd) {
2151                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2152                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2153                 if (pcidev) break;
2154                 nd = nd->parent;
2155         }
2156         if (pcidev)
2157                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2158         if (!parent) {
2159                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2160                         node->name);
2161                 return -ENODEV;
2162         }
2163
2164         /* Find us in the parent and its childs */
2165         res = parent->child;
2166         start = node->addrs[index].address;
2167         end = start + node->addrs[index].size - 1;
2168         while (res) {
2169                 if (res->start == start && res->end == end &&
2170                     (res->flags & IORESOURCE_BUSY))
2171                         break;
2172                 if (res->start <= start && res->end >= end)
2173                         res = res->child;
2174                 else
2175                         res = res->sibling;
2176         }
2177         if (!res)
2178                 return -ENODEV;
2179
2180         if (res->name) {
2181                 kfree(res->name);
2182                 res->name = NULL;
2183         }
2184         release_resource(res);
2185         kfree(res);
2186
2187         return 0;
2188 }
2189 EXPORT_SYMBOL(release_OF_resource);
2190 #endif /* CONFIG_PCI */