]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/kernel/process.c
d52ded366f14abda09297f0ed5b763eae9900671
[linux-2.6-omap-h63xx.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_vsx = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66         if (tsk->thread.regs) {
67                 /*
68                  * We need to disable preemption here because if we didn't,
69                  * another process could get scheduled after the regs->msr
70                  * test but before we have finished saving the FP registers
71                  * to the thread_struct.  That process could take over the
72                  * FPU, and then when we get scheduled again we would store
73                  * bogus values for the remaining FP registers.
74                  */
75                 preempt_disable();
76                 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78                         /*
79                          * This should only ever be called for current or
80                          * for a stopped child process.  Since we save away
81                          * the FP register state on context switch on SMP,
82                          * there is something wrong if a stopped child appears
83                          * to still have its FP state in the CPU registers.
84                          */
85                         BUG_ON(tsk != current);
86 #endif
87                         giveup_fpu(tsk);
88                 }
89                 preempt_enable();
90         }
91 }
92
93 void enable_kernel_fp(void)
94 {
95         WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99                 giveup_fpu(current);
100         else
101                 giveup_fpu(NULL);       /* just enables FP for kernel */
102 #else
103         giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 {
110 #ifdef CONFIG_VSX
111         int i;
112         elf_fpreg_t *reg;
113 #endif
114
115         if (!tsk->thread.regs)
116                 return 0;
117         flush_fp_to_thread(current);
118
119 #ifdef CONFIG_VSX
120         reg = (elf_fpreg_t *)fpregs;
121         for (i = 0; i < ELF_NFPREG - 1; i++, reg++)
122                 *reg = tsk->thread.TS_FPR(i);
123         memcpy(reg, &tsk->thread.fpscr, sizeof(elf_fpreg_t));
124 #else
125         memcpy(fpregs, &tsk->thread.TS_FPR(0), sizeof(*fpregs));
126 #endif
127
128         return 1;
129 }
130
131 #ifdef CONFIG_ALTIVEC
132 void enable_kernel_altivec(void)
133 {
134         WARN_ON(preemptible());
135
136 #ifdef CONFIG_SMP
137         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
138                 giveup_altivec(current);
139         else
140                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
141 #else
142         giveup_altivec(last_task_used_altivec);
143 #endif /* CONFIG_SMP */
144 }
145 EXPORT_SYMBOL(enable_kernel_altivec);
146
147 /*
148  * Make sure the VMX/Altivec register state in the
149  * the thread_struct is up to date for task tsk.
150  */
151 void flush_altivec_to_thread(struct task_struct *tsk)
152 {
153         if (tsk->thread.regs) {
154                 preempt_disable();
155                 if (tsk->thread.regs->msr & MSR_VEC) {
156 #ifdef CONFIG_SMP
157                         BUG_ON(tsk != current);
158 #endif
159                         giveup_altivec(tsk);
160                 }
161                 preempt_enable();
162         }
163 }
164
165 int dump_task_altivec(struct task_struct *tsk, elf_vrreg_t *vrregs)
166 {
167         /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
168          * separately, see below */
169         const int nregs = ELF_NVRREG - 2;
170         elf_vrreg_t *reg;
171         u32 *dest;
172
173         if (tsk == current)
174                 flush_altivec_to_thread(tsk);
175
176         reg = (elf_vrreg_t *)vrregs;
177
178         /* copy the 32 vr registers */
179         memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
180         reg += nregs;
181
182         /* copy the vscr */
183         memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
184         reg++;
185
186         /* vrsave is stored in the high 32bit slot of the final 128bits */
187         memset(reg, 0, sizeof(*reg));
188         dest = (u32 *)reg;
189         *dest = tsk->thread.vrsave;
190
191         return 1;
192 }
193 #endif /* CONFIG_ALTIVEC */
194
195 #ifdef CONFIG_VSX
196 #if 0
197 /* not currently used, but some crazy RAID module might want to later */
198 void enable_kernel_vsx(void)
199 {
200         WARN_ON(preemptible());
201
202 #ifdef CONFIG_SMP
203         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
204                 giveup_vsx(current);
205         else
206                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
207 #else
208         giveup_vsx(last_task_used_vsx);
209 #endif /* CONFIG_SMP */
210 }
211 EXPORT_SYMBOL(enable_kernel_vsx);
212 #endif
213
214 void flush_vsx_to_thread(struct task_struct *tsk)
215 {
216         if (tsk->thread.regs) {
217                 preempt_disable();
218                 if (tsk->thread.regs->msr & MSR_VSX) {
219 #ifdef CONFIG_SMP
220                         BUG_ON(tsk != current);
221 #endif
222                         giveup_vsx(tsk);
223                 }
224                 preempt_enable();
225         }
226 }
227
228 /*
229  * This dumps the lower half 64bits of the first 32 VSX registers.
230  * This needs to be called with dump_task_fp and dump_task_altivec to
231  * get all the VSX state.
232  */
233 int dump_task_vsx(struct task_struct *tsk, elf_vrreg_t *vrregs)
234 {
235         elf_vrreg_t *reg;
236         double buf[32];
237         int i;
238
239         if (tsk == current)
240                 flush_vsx_to_thread(tsk);
241
242         reg = (elf_vrreg_t *)vrregs;
243
244         for (i = 0; i < 32 ; i++)
245                 buf[i] = current->thread.fpr[i][TS_VSRLOWOFFSET];
246         memcpy(reg, buf, sizeof(buf));
247
248         return 1;
249 }
250 #endif /* CONFIG_VSX */
251
252 int dump_task_vector(struct task_struct *tsk, elf_vrregset_t *vrregs)
253 {
254         int rc = 0;
255         elf_vrreg_t *regs = (elf_vrreg_t *)vrregs;
256 #ifdef CONFIG_ALTIVEC
257         rc = dump_task_altivec(tsk, regs);
258         if (rc)
259                 return rc;
260         regs += ELF_NVRREG;
261 #endif
262
263 #ifdef CONFIG_VSX
264         rc = dump_task_vsx(tsk, regs);
265 #endif
266         return rc;
267 }
268
269 #ifdef CONFIG_SPE
270
271 void enable_kernel_spe(void)
272 {
273         WARN_ON(preemptible());
274
275 #ifdef CONFIG_SMP
276         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
277                 giveup_spe(current);
278         else
279                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
280 #else
281         giveup_spe(last_task_used_spe);
282 #endif /* __SMP __ */
283 }
284 EXPORT_SYMBOL(enable_kernel_spe);
285
286 void flush_spe_to_thread(struct task_struct *tsk)
287 {
288         if (tsk->thread.regs) {
289                 preempt_disable();
290                 if (tsk->thread.regs->msr & MSR_SPE) {
291 #ifdef CONFIG_SMP
292                         BUG_ON(tsk != current);
293 #endif
294                         giveup_spe(tsk);
295                 }
296                 preempt_enable();
297         }
298 }
299
300 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
301 {
302         flush_spe_to_thread(current);
303         /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
304         memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
305         return 1;
306 }
307 #endif /* CONFIG_SPE */
308
309 #ifndef CONFIG_SMP
310 /*
311  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
312  * and the current task has some state, discard it.
313  */
314 void discard_lazy_cpu_state(void)
315 {
316         preempt_disable();
317         if (last_task_used_math == current)
318                 last_task_used_math = NULL;
319 #ifdef CONFIG_ALTIVEC
320         if (last_task_used_altivec == current)
321                 last_task_used_altivec = NULL;
322 #endif /* CONFIG_ALTIVEC */
323 #ifdef CONFIG_VSX
324         if (last_task_used_vsx == current)
325                 last_task_used_vsx = NULL;
326 #endif /* CONFIG_VSX */
327 #ifdef CONFIG_SPE
328         if (last_task_used_spe == current)
329                 last_task_used_spe = NULL;
330 #endif
331         preempt_enable();
332 }
333 #endif /* CONFIG_SMP */
334
335 static DEFINE_PER_CPU(unsigned long, current_dabr);
336
337 int set_dabr(unsigned long dabr)
338 {
339         __get_cpu_var(current_dabr) = dabr;
340
341 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
342         if (ppc_md.set_dabr)
343                 return ppc_md.set_dabr(dabr);
344 #endif
345
346         /* XXX should we have a CPU_FTR_HAS_DABR ? */
347 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
348         mtspr(SPRN_DABR, dabr);
349 #endif
350         return 0;
351 }
352
353 #ifdef CONFIG_PPC64
354 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
355 #endif
356
357 struct task_struct *__switch_to(struct task_struct *prev,
358         struct task_struct *new)
359 {
360         struct thread_struct *new_thread, *old_thread;
361         unsigned long flags;
362         struct task_struct *last;
363
364 #ifdef CONFIG_SMP
365         /* avoid complexity of lazy save/restore of fpu
366          * by just saving it every time we switch out if
367          * this task used the fpu during the last quantum.
368          *
369          * If it tries to use the fpu again, it'll trap and
370          * reload its fp regs.  So we don't have to do a restore
371          * every switch, just a save.
372          *  -- Cort
373          */
374         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
375                 giveup_fpu(prev);
376 #ifdef CONFIG_ALTIVEC
377         /*
378          * If the previous thread used altivec in the last quantum
379          * (thus changing altivec regs) then save them.
380          * We used to check the VRSAVE register but not all apps
381          * set it, so we don't rely on it now (and in fact we need
382          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
383          *
384          * On SMP we always save/restore altivec regs just to avoid the
385          * complexity of changing processors.
386          *  -- Cort
387          */
388         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
389                 giveup_altivec(prev);
390 #endif /* CONFIG_ALTIVEC */
391 #ifdef CONFIG_VSX
392         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
393                 giveup_vsx(prev);
394 #endif /* CONFIG_VSX */
395 #ifdef CONFIG_SPE
396         /*
397          * If the previous thread used spe in the last quantum
398          * (thus changing spe regs) then save them.
399          *
400          * On SMP we always save/restore spe regs just to avoid the
401          * complexity of changing processors.
402          */
403         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
404                 giveup_spe(prev);
405 #endif /* CONFIG_SPE */
406
407 #else  /* CONFIG_SMP */
408 #ifdef CONFIG_ALTIVEC
409         /* Avoid the trap.  On smp this this never happens since
410          * we don't set last_task_used_altivec -- Cort
411          */
412         if (new->thread.regs && last_task_used_altivec == new)
413                 new->thread.regs->msr |= MSR_VEC;
414 #endif /* CONFIG_ALTIVEC */
415 #ifdef CONFIG_VSX
416         if (new->thread.regs && last_task_used_vsx == new)
417                 new->thread.regs->msr |= MSR_VSX;
418 #endif /* CONFIG_VSX */
419 #ifdef CONFIG_SPE
420         /* Avoid the trap.  On smp this this never happens since
421          * we don't set last_task_used_spe
422          */
423         if (new->thread.regs && last_task_used_spe == new)
424                 new->thread.regs->msr |= MSR_SPE;
425 #endif /* CONFIG_SPE */
426
427 #endif /* CONFIG_SMP */
428
429         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
430                 set_dabr(new->thread.dabr);
431
432         new_thread = &new->thread;
433         old_thread = &current->thread;
434
435 #ifdef CONFIG_PPC64
436         /*
437          * Collect processor utilization data per process
438          */
439         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
440                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
441                 long unsigned start_tb, current_tb;
442                 start_tb = old_thread->start_tb;
443                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
444                 old_thread->accum_tb += (current_tb - start_tb);
445                 new_thread->start_tb = current_tb;
446         }
447 #endif
448
449         local_irq_save(flags);
450
451         account_system_vtime(current);
452         account_process_vtime(current);
453         calculate_steal_time();
454
455         /*
456          * We can't take a PMU exception inside _switch() since there is a
457          * window where the kernel stack SLB and the kernel stack are out
458          * of sync. Hard disable here.
459          */
460         hard_irq_disable();
461         last = _switch(old_thread, new_thread);
462
463         local_irq_restore(flags);
464
465         return last;
466 }
467
468 static int instructions_to_print = 16;
469
470 static void show_instructions(struct pt_regs *regs)
471 {
472         int i;
473         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
474                         sizeof(int));
475
476         printk("Instruction dump:");
477
478         for (i = 0; i < instructions_to_print; i++) {
479                 int instr;
480
481                 if (!(i % 8))
482                         printk("\n");
483
484 #if !defined(CONFIG_BOOKE)
485                 /* If executing with the IMMU off, adjust pc rather
486                  * than print XXXXXXXX.
487                  */
488                 if (!(regs->msr & MSR_IR))
489                         pc = (unsigned long)phys_to_virt(pc);
490 #endif
491
492                 /* We use __get_user here *only* to avoid an OOPS on a
493                  * bad address because the pc *should* only be a
494                  * kernel address.
495                  */
496                 if (!__kernel_text_address(pc) ||
497                      __get_user(instr, (unsigned int __user *)pc)) {
498                         printk("XXXXXXXX ");
499                 } else {
500                         if (regs->nip == pc)
501                                 printk("<%08x> ", instr);
502                         else
503                                 printk("%08x ", instr);
504                 }
505
506                 pc += sizeof(int);
507         }
508
509         printk("\n");
510 }
511
512 static struct regbit {
513         unsigned long bit;
514         const char *name;
515 } msr_bits[] = {
516         {MSR_EE,        "EE"},
517         {MSR_PR,        "PR"},
518         {MSR_FP,        "FP"},
519         {MSR_VEC,       "VEC"},
520         {MSR_VSX,       "VSX"},
521         {MSR_ME,        "ME"},
522         {MSR_IR,        "IR"},
523         {MSR_DR,        "DR"},
524         {0,             NULL}
525 };
526
527 static void printbits(unsigned long val, struct regbit *bits)
528 {
529         const char *sep = "";
530
531         printk("<");
532         for (; bits->bit; ++bits)
533                 if (val & bits->bit) {
534                         printk("%s%s", sep, bits->name);
535                         sep = ",";
536                 }
537         printk(">");
538 }
539
540 #ifdef CONFIG_PPC64
541 #define REG             "%016lx"
542 #define REGS_PER_LINE   4
543 #define LAST_VOLATILE   13
544 #else
545 #define REG             "%08lx"
546 #define REGS_PER_LINE   8
547 #define LAST_VOLATILE   12
548 #endif
549
550 void show_regs(struct pt_regs * regs)
551 {
552         int i, trap;
553
554         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
555                regs->nip, regs->link, regs->ctr);
556         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
557                regs, regs->trap, print_tainted(), init_utsname()->release);
558         printk("MSR: "REG" ", regs->msr);
559         printbits(regs->msr, msr_bits);
560         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
561         trap = TRAP(regs);
562         if (trap == 0x300 || trap == 0x600)
563 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
564                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
565 #else
566                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
567 #endif
568         printk("TASK = %p[%d] '%s' THREAD: %p",
569                current, task_pid_nr(current), current->comm, task_thread_info(current));
570
571 #ifdef CONFIG_SMP
572         printk(" CPU: %d", raw_smp_processor_id());
573 #endif /* CONFIG_SMP */
574
575         for (i = 0;  i < 32;  i++) {
576                 if ((i % REGS_PER_LINE) == 0)
577                         printk("\n" KERN_INFO "GPR%02d: ", i);
578                 printk(REG " ", regs->gpr[i]);
579                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
580                         break;
581         }
582         printk("\n");
583 #ifdef CONFIG_KALLSYMS
584         /*
585          * Lookup NIP late so we have the best change of getting the
586          * above info out without failing
587          */
588         printk("NIP ["REG"] ", regs->nip);
589         print_symbol("%s\n", regs->nip);
590         printk("LR ["REG"] ", regs->link);
591         print_symbol("%s\n", regs->link);
592 #endif
593         show_stack(current, (unsigned long *) regs->gpr[1]);
594         if (!user_mode(regs))
595                 show_instructions(regs);
596 }
597
598 void exit_thread(void)
599 {
600         discard_lazy_cpu_state();
601 }
602
603 void flush_thread(void)
604 {
605 #ifdef CONFIG_PPC64
606         struct thread_info *t = current_thread_info();
607
608         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
609                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
610                 if (test_ti_thread_flag(t, TIF_32BIT))
611                         clear_ti_thread_flag(t, TIF_32BIT);
612                 else
613                         set_ti_thread_flag(t, TIF_32BIT);
614         }
615 #endif
616
617         discard_lazy_cpu_state();
618
619         if (current->thread.dabr) {
620                 current->thread.dabr = 0;
621                 set_dabr(0);
622         }
623 }
624
625 void
626 release_thread(struct task_struct *t)
627 {
628 }
629
630 /*
631  * This gets called before we allocate a new thread and copy
632  * the current task into it.
633  */
634 void prepare_to_copy(struct task_struct *tsk)
635 {
636         flush_fp_to_thread(current);
637         flush_altivec_to_thread(current);
638         flush_vsx_to_thread(current);
639         flush_spe_to_thread(current);
640 }
641
642 /*
643  * Copy a thread..
644  */
645 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
646                 unsigned long unused, struct task_struct *p,
647                 struct pt_regs *regs)
648 {
649         struct pt_regs *childregs, *kregs;
650         extern void ret_from_fork(void);
651         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
652
653         CHECK_FULL_REGS(regs);
654         /* Copy registers */
655         sp -= sizeof(struct pt_regs);
656         childregs = (struct pt_regs *) sp;
657         *childregs = *regs;
658         if ((childregs->msr & MSR_PR) == 0) {
659                 /* for kernel thread, set `current' and stackptr in new task */
660                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
661 #ifdef CONFIG_PPC32
662                 childregs->gpr[2] = (unsigned long) p;
663 #else
664                 clear_tsk_thread_flag(p, TIF_32BIT);
665 #endif
666                 p->thread.regs = NULL;  /* no user register state */
667         } else {
668                 childregs->gpr[1] = usp;
669                 p->thread.regs = childregs;
670                 if (clone_flags & CLONE_SETTLS) {
671 #ifdef CONFIG_PPC64
672                         if (!test_thread_flag(TIF_32BIT))
673                                 childregs->gpr[13] = childregs->gpr[6];
674                         else
675 #endif
676                                 childregs->gpr[2] = childregs->gpr[6];
677                 }
678         }
679         childregs->gpr[3] = 0;  /* Result from fork() */
680         sp -= STACK_FRAME_OVERHEAD;
681
682         /*
683          * The way this works is that at some point in the future
684          * some task will call _switch to switch to the new task.
685          * That will pop off the stack frame created below and start
686          * the new task running at ret_from_fork.  The new task will
687          * do some house keeping and then return from the fork or clone
688          * system call, using the stack frame created above.
689          */
690         sp -= sizeof(struct pt_regs);
691         kregs = (struct pt_regs *) sp;
692         sp -= STACK_FRAME_OVERHEAD;
693         p->thread.ksp = sp;
694         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
695                                 _ALIGN_UP(sizeof(struct thread_info), 16);
696
697 #ifdef CONFIG_PPC64
698         if (cpu_has_feature(CPU_FTR_SLB)) {
699                 unsigned long sp_vsid;
700                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
701
702                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
703                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
704                                 << SLB_VSID_SHIFT_1T;
705                 else
706                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
707                                 << SLB_VSID_SHIFT;
708                 sp_vsid |= SLB_VSID_KERNEL | llp;
709                 p->thread.ksp_vsid = sp_vsid;
710         }
711
712         /*
713          * The PPC64 ABI makes use of a TOC to contain function 
714          * pointers.  The function (ret_from_except) is actually a pointer
715          * to the TOC entry.  The first entry is a pointer to the actual
716          * function.
717          */
718         kregs->nip = *((unsigned long *)ret_from_fork);
719 #else
720         kregs->nip = (unsigned long)ret_from_fork;
721 #endif
722
723         return 0;
724 }
725
726 /*
727  * Set up a thread for executing a new program
728  */
729 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
730 {
731 #ifdef CONFIG_PPC64
732         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
733 #endif
734
735         set_fs(USER_DS);
736
737         /*
738          * If we exec out of a kernel thread then thread.regs will not be
739          * set.  Do it now.
740          */
741         if (!current->thread.regs) {
742                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
743                 current->thread.regs = regs - 1;
744         }
745
746         memset(regs->gpr, 0, sizeof(regs->gpr));
747         regs->ctr = 0;
748         regs->link = 0;
749         regs->xer = 0;
750         regs->ccr = 0;
751         regs->gpr[1] = sp;
752
753         /*
754          * We have just cleared all the nonvolatile GPRs, so make
755          * FULL_REGS(regs) return true.  This is necessary to allow
756          * ptrace to examine the thread immediately after exec.
757          */
758         regs->trap &= ~1UL;
759
760 #ifdef CONFIG_PPC32
761         regs->mq = 0;
762         regs->nip = start;
763         regs->msr = MSR_USER;
764 #else
765         if (!test_thread_flag(TIF_32BIT)) {
766                 unsigned long entry, toc;
767
768                 /* start is a relocated pointer to the function descriptor for
769                  * the elf _start routine.  The first entry in the function
770                  * descriptor is the entry address of _start and the second
771                  * entry is the TOC value we need to use.
772                  */
773                 __get_user(entry, (unsigned long __user *)start);
774                 __get_user(toc, (unsigned long __user *)start+1);
775
776                 /* Check whether the e_entry function descriptor entries
777                  * need to be relocated before we can use them.
778                  */
779                 if (load_addr != 0) {
780                         entry += load_addr;
781                         toc   += load_addr;
782                 }
783                 regs->nip = entry;
784                 regs->gpr[2] = toc;
785                 regs->msr = MSR_USER64;
786         } else {
787                 regs->nip = start;
788                 regs->gpr[2] = 0;
789                 regs->msr = MSR_USER32;
790         }
791 #endif
792
793         discard_lazy_cpu_state();
794 #ifdef CONFIG_VSX
795         current->thread.used_vsr = 0;
796 #endif
797         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
798         current->thread.fpscr.val = 0;
799 #ifdef CONFIG_ALTIVEC
800         memset(current->thread.vr, 0, sizeof(current->thread.vr));
801         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
802         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
803         current->thread.vrsave = 0;
804         current->thread.used_vr = 0;
805 #endif /* CONFIG_ALTIVEC */
806 #ifdef CONFIG_SPE
807         memset(current->thread.evr, 0, sizeof(current->thread.evr));
808         current->thread.acc = 0;
809         current->thread.spefscr = 0;
810         current->thread.used_spe = 0;
811 #endif /* CONFIG_SPE */
812 }
813
814 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
815                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
816
817 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
818 {
819         struct pt_regs *regs = tsk->thread.regs;
820
821         /* This is a bit hairy.  If we are an SPE enabled  processor
822          * (have embedded fp) we store the IEEE exception enable flags in
823          * fpexc_mode.  fpexc_mode is also used for setting FP exception
824          * mode (asyn, precise, disabled) for 'Classic' FP. */
825         if (val & PR_FP_EXC_SW_ENABLE) {
826 #ifdef CONFIG_SPE
827                 if (cpu_has_feature(CPU_FTR_SPE)) {
828                         tsk->thread.fpexc_mode = val &
829                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
830                         return 0;
831                 } else {
832                         return -EINVAL;
833                 }
834 #else
835                 return -EINVAL;
836 #endif
837         }
838
839         /* on a CONFIG_SPE this does not hurt us.  The bits that
840          * __pack_fe01 use do not overlap with bits used for
841          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
842          * on CONFIG_SPE implementations are reserved so writing to
843          * them does not change anything */
844         if (val > PR_FP_EXC_PRECISE)
845                 return -EINVAL;
846         tsk->thread.fpexc_mode = __pack_fe01(val);
847         if (regs != NULL && (regs->msr & MSR_FP) != 0)
848                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
849                         | tsk->thread.fpexc_mode;
850         return 0;
851 }
852
853 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
854 {
855         unsigned int val;
856
857         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
858 #ifdef CONFIG_SPE
859                 if (cpu_has_feature(CPU_FTR_SPE))
860                         val = tsk->thread.fpexc_mode;
861                 else
862                         return -EINVAL;
863 #else
864                 return -EINVAL;
865 #endif
866         else
867                 val = __unpack_fe01(tsk->thread.fpexc_mode);
868         return put_user(val, (unsigned int __user *) adr);
869 }
870
871 int set_endian(struct task_struct *tsk, unsigned int val)
872 {
873         struct pt_regs *regs = tsk->thread.regs;
874
875         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
876             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
877                 return -EINVAL;
878
879         if (regs == NULL)
880                 return -EINVAL;
881
882         if (val == PR_ENDIAN_BIG)
883                 regs->msr &= ~MSR_LE;
884         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
885                 regs->msr |= MSR_LE;
886         else
887                 return -EINVAL;
888
889         return 0;
890 }
891
892 int get_endian(struct task_struct *tsk, unsigned long adr)
893 {
894         struct pt_regs *regs = tsk->thread.regs;
895         unsigned int val;
896
897         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
898             !cpu_has_feature(CPU_FTR_REAL_LE))
899                 return -EINVAL;
900
901         if (regs == NULL)
902                 return -EINVAL;
903
904         if (regs->msr & MSR_LE) {
905                 if (cpu_has_feature(CPU_FTR_REAL_LE))
906                         val = PR_ENDIAN_LITTLE;
907                 else
908                         val = PR_ENDIAN_PPC_LITTLE;
909         } else
910                 val = PR_ENDIAN_BIG;
911
912         return put_user(val, (unsigned int __user *)adr);
913 }
914
915 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
916 {
917         tsk->thread.align_ctl = val;
918         return 0;
919 }
920
921 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
922 {
923         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
924 }
925
926 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
927
928 int sys_clone(unsigned long clone_flags, unsigned long usp,
929               int __user *parent_tidp, void __user *child_threadptr,
930               int __user *child_tidp, int p6,
931               struct pt_regs *regs)
932 {
933         CHECK_FULL_REGS(regs);
934         if (usp == 0)
935                 usp = regs->gpr[1];     /* stack pointer for child */
936 #ifdef CONFIG_PPC64
937         if (test_thread_flag(TIF_32BIT)) {
938                 parent_tidp = TRUNC_PTR(parent_tidp);
939                 child_tidp = TRUNC_PTR(child_tidp);
940         }
941 #endif
942         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
943 }
944
945 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
946              unsigned long p4, unsigned long p5, unsigned long p6,
947              struct pt_regs *regs)
948 {
949         CHECK_FULL_REGS(regs);
950         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
951 }
952
953 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
954               unsigned long p4, unsigned long p5, unsigned long p6,
955               struct pt_regs *regs)
956 {
957         CHECK_FULL_REGS(regs);
958         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
959                         regs, 0, NULL, NULL);
960 }
961
962 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
963                unsigned long a3, unsigned long a4, unsigned long a5,
964                struct pt_regs *regs)
965 {
966         int error;
967         char *filename;
968
969         filename = getname((char __user *) a0);
970         error = PTR_ERR(filename);
971         if (IS_ERR(filename))
972                 goto out;
973         flush_fp_to_thread(current);
974         flush_altivec_to_thread(current);
975         flush_spe_to_thread(current);
976         error = do_execve(filename, (char __user * __user *) a1,
977                           (char __user * __user *) a2, regs);
978         putname(filename);
979 out:
980         return error;
981 }
982
983 #ifdef CONFIG_IRQSTACKS
984 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
985                                   unsigned long nbytes)
986 {
987         unsigned long stack_page;
988         unsigned long cpu = task_cpu(p);
989
990         /*
991          * Avoid crashing if the stack has overflowed and corrupted
992          * task_cpu(p), which is in the thread_info struct.
993          */
994         if (cpu < NR_CPUS && cpu_possible(cpu)) {
995                 stack_page = (unsigned long) hardirq_ctx[cpu];
996                 if (sp >= stack_page + sizeof(struct thread_struct)
997                     && sp <= stack_page + THREAD_SIZE - nbytes)
998                         return 1;
999
1000                 stack_page = (unsigned long) softirq_ctx[cpu];
1001                 if (sp >= stack_page + sizeof(struct thread_struct)
1002                     && sp <= stack_page + THREAD_SIZE - nbytes)
1003                         return 1;
1004         }
1005         return 0;
1006 }
1007
1008 #else
1009 #define valid_irq_stack(sp, p, nb)      0
1010 #endif /* CONFIG_IRQSTACKS */
1011
1012 int validate_sp(unsigned long sp, struct task_struct *p,
1013                        unsigned long nbytes)
1014 {
1015         unsigned long stack_page = (unsigned long)task_stack_page(p);
1016
1017         if (sp >= stack_page + sizeof(struct thread_struct)
1018             && sp <= stack_page + THREAD_SIZE - nbytes)
1019                 return 1;
1020
1021         return valid_irq_stack(sp, p, nbytes);
1022 }
1023
1024 EXPORT_SYMBOL(validate_sp);
1025
1026 unsigned long get_wchan(struct task_struct *p)
1027 {
1028         unsigned long ip, sp;
1029         int count = 0;
1030
1031         if (!p || p == current || p->state == TASK_RUNNING)
1032                 return 0;
1033
1034         sp = p->thread.ksp;
1035         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1036                 return 0;
1037
1038         do {
1039                 sp = *(unsigned long *)sp;
1040                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1041                         return 0;
1042                 if (count > 0) {
1043                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1044                         if (!in_sched_functions(ip))
1045                                 return ip;
1046                 }
1047         } while (count++ < 16);
1048         return 0;
1049 }
1050
1051 static int kstack_depth_to_print = 64;
1052
1053 void show_stack(struct task_struct *tsk, unsigned long *stack)
1054 {
1055         unsigned long sp, ip, lr, newsp;
1056         int count = 0;
1057         int firstframe = 1;
1058
1059         sp = (unsigned long) stack;
1060         if (tsk == NULL)
1061                 tsk = current;
1062         if (sp == 0) {
1063                 if (tsk == current)
1064                         asm("mr %0,1" : "=r" (sp));
1065                 else
1066                         sp = tsk->thread.ksp;
1067         }
1068
1069         lr = 0;
1070         printk("Call Trace:\n");
1071         do {
1072                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1073                         return;
1074
1075                 stack = (unsigned long *) sp;
1076                 newsp = stack[0];
1077                 ip = stack[STACK_FRAME_LR_SAVE];
1078                 if (!firstframe || ip != lr) {
1079                         printk("["REG"] ["REG"] ", sp, ip);
1080                         print_symbol("%s", ip);
1081                         if (firstframe)
1082                                 printk(" (unreliable)");
1083                         printk("\n");
1084                 }
1085                 firstframe = 0;
1086
1087                 /*
1088                  * See if this is an exception frame.
1089                  * We look for the "regshere" marker in the current frame.
1090                  */
1091                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1092                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1093                         struct pt_regs *regs = (struct pt_regs *)
1094                                 (sp + STACK_FRAME_OVERHEAD);
1095                         printk("--- Exception: %lx", regs->trap);
1096                         print_symbol(" at %s\n", regs->nip);
1097                         lr = regs->link;
1098                         print_symbol("    LR = %s\n", lr);
1099                         firstframe = 1;
1100                 }
1101
1102                 sp = newsp;
1103         } while (count++ < kstack_depth_to_print);
1104 }
1105
1106 void dump_stack(void)
1107 {
1108         show_stack(current, NULL);
1109 }
1110 EXPORT_SYMBOL(dump_stack);
1111
1112 #ifdef CONFIG_PPC64
1113 void ppc64_runlatch_on(void)
1114 {
1115         unsigned long ctrl;
1116
1117         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1118                 HMT_medium();
1119
1120                 ctrl = mfspr(SPRN_CTRLF);
1121                 ctrl |= CTRL_RUNLATCH;
1122                 mtspr(SPRN_CTRLT, ctrl);
1123
1124                 set_thread_flag(TIF_RUNLATCH);
1125         }
1126 }
1127
1128 void ppc64_runlatch_off(void)
1129 {
1130         unsigned long ctrl;
1131
1132         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1133                 HMT_medium();
1134
1135                 clear_thread_flag(TIF_RUNLATCH);
1136
1137                 ctrl = mfspr(SPRN_CTRLF);
1138                 ctrl &= ~CTRL_RUNLATCH;
1139                 mtspr(SPRN_CTRLT, ctrl);
1140         }
1141 }
1142 #endif
1143
1144 #if THREAD_SHIFT < PAGE_SHIFT
1145
1146 static struct kmem_cache *thread_info_cache;
1147
1148 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1149 {
1150         struct thread_info *ti;
1151
1152         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1153         if (unlikely(ti == NULL))
1154                 return NULL;
1155 #ifdef CONFIG_DEBUG_STACK_USAGE
1156         memset(ti, 0, THREAD_SIZE);
1157 #endif
1158         return ti;
1159 }
1160
1161 void free_thread_info(struct thread_info *ti)
1162 {
1163         kmem_cache_free(thread_info_cache, ti);
1164 }
1165
1166 void thread_info_cache_init(void)
1167 {
1168         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1169                                               THREAD_SIZE, 0, NULL);
1170         BUG_ON(thread_info_cache == NULL);
1171 }
1172
1173 #endif /* THREAD_SHIFT < PAGE_SHIFT */