]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/powerpc/kernel/process.c
85e557300d8650cd2279e0b869a4d6da4123b3cb
[linux-2.6-omap-h63xx.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_vsx = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61  * Make sure the floating-point register state in the
62  * the thread_struct is up to date for task tsk.
63  */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66         if (tsk->thread.regs) {
67                 /*
68                  * We need to disable preemption here because if we didn't,
69                  * another process could get scheduled after the regs->msr
70                  * test but before we have finished saving the FP registers
71                  * to the thread_struct.  That process could take over the
72                  * FPU, and then when we get scheduled again we would store
73                  * bogus values for the remaining FP registers.
74                  */
75                 preempt_disable();
76                 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78                         /*
79                          * This should only ever be called for current or
80                          * for a stopped child process.  Since we save away
81                          * the FP register state on context switch on SMP,
82                          * there is something wrong if a stopped child appears
83                          * to still have its FP state in the CPU registers.
84                          */
85                         BUG_ON(tsk != current);
86 #endif
87                         giveup_fpu(tsk);
88                 }
89                 preempt_enable();
90         }
91 }
92
93 void enable_kernel_fp(void)
94 {
95         WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99                 giveup_fpu(current);
100         else
101                 giveup_fpu(NULL);       /* just enables FP for kernel */
102 #else
103         giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 #ifdef CONFIG_ALTIVEC
109 void enable_kernel_altivec(void)
110 {
111         WARN_ON(preemptible());
112
113 #ifdef CONFIG_SMP
114         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
115                 giveup_altivec(current);
116         else
117                 giveup_altivec(NULL);   /* just enable AltiVec for kernel - force */
118 #else
119         giveup_altivec(last_task_used_altivec);
120 #endif /* CONFIG_SMP */
121 }
122 EXPORT_SYMBOL(enable_kernel_altivec);
123
124 /*
125  * Make sure the VMX/Altivec register state in the
126  * the thread_struct is up to date for task tsk.
127  */
128 void flush_altivec_to_thread(struct task_struct *tsk)
129 {
130         if (tsk->thread.regs) {
131                 preempt_disable();
132                 if (tsk->thread.regs->msr & MSR_VEC) {
133 #ifdef CONFIG_SMP
134                         BUG_ON(tsk != current);
135 #endif
136                         giveup_altivec(tsk);
137                 }
138                 preempt_enable();
139         }
140 }
141 #endif /* CONFIG_ALTIVEC */
142
143 #ifdef CONFIG_VSX
144 #if 0
145 /* not currently used, but some crazy RAID module might want to later */
146 void enable_kernel_vsx(void)
147 {
148         WARN_ON(preemptible());
149
150 #ifdef CONFIG_SMP
151         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
152                 giveup_vsx(current);
153         else
154                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
155 #else
156         giveup_vsx(last_task_used_vsx);
157 #endif /* CONFIG_SMP */
158 }
159 EXPORT_SYMBOL(enable_kernel_vsx);
160 #endif
161
162 void flush_vsx_to_thread(struct task_struct *tsk)
163 {
164         if (tsk->thread.regs) {
165                 preempt_disable();
166                 if (tsk->thread.regs->msr & MSR_VSX) {
167 #ifdef CONFIG_SMP
168                         BUG_ON(tsk != current);
169 #endif
170                         giveup_vsx(tsk);
171                 }
172                 preempt_enable();
173         }
174 }
175 #endif /* CONFIG_VSX */
176
177 #ifdef CONFIG_SPE
178
179 void enable_kernel_spe(void)
180 {
181         WARN_ON(preemptible());
182
183 #ifdef CONFIG_SMP
184         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
185                 giveup_spe(current);
186         else
187                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
188 #else
189         giveup_spe(last_task_used_spe);
190 #endif /* __SMP __ */
191 }
192 EXPORT_SYMBOL(enable_kernel_spe);
193
194 void flush_spe_to_thread(struct task_struct *tsk)
195 {
196         if (tsk->thread.regs) {
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_SPE) {
199 #ifdef CONFIG_SMP
200                         BUG_ON(tsk != current);
201 #endif
202                         giveup_spe(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 #endif /* CONFIG_SPE */
208
209 #ifndef CONFIG_SMP
210 /*
211  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
212  * and the current task has some state, discard it.
213  */
214 void discard_lazy_cpu_state(void)
215 {
216         preempt_disable();
217         if (last_task_used_math == current)
218                 last_task_used_math = NULL;
219 #ifdef CONFIG_ALTIVEC
220         if (last_task_used_altivec == current)
221                 last_task_used_altivec = NULL;
222 #endif /* CONFIG_ALTIVEC */
223 #ifdef CONFIG_VSX
224         if (last_task_used_vsx == current)
225                 last_task_used_vsx = NULL;
226 #endif /* CONFIG_VSX */
227 #ifdef CONFIG_SPE
228         if (last_task_used_spe == current)
229                 last_task_used_spe = NULL;
230 #endif
231         preempt_enable();
232 }
233 #endif /* CONFIG_SMP */
234
235 static DEFINE_PER_CPU(unsigned long, current_dabr);
236
237 int set_dabr(unsigned long dabr)
238 {
239         __get_cpu_var(current_dabr) = dabr;
240
241 #ifdef CONFIG_PPC_MERGE         /* XXX for now */
242         if (ppc_md.set_dabr)
243                 return ppc_md.set_dabr(dabr);
244 #endif
245
246         /* XXX should we have a CPU_FTR_HAS_DABR ? */
247 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
248         mtspr(SPRN_DABR, dabr);
249 #endif
250         return 0;
251 }
252
253 #ifdef CONFIG_PPC64
254 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
255 #endif
256
257 struct task_struct *__switch_to(struct task_struct *prev,
258         struct task_struct *new)
259 {
260         struct thread_struct *new_thread, *old_thread;
261         unsigned long flags;
262         struct task_struct *last;
263
264 #ifdef CONFIG_SMP
265         /* avoid complexity of lazy save/restore of fpu
266          * by just saving it every time we switch out if
267          * this task used the fpu during the last quantum.
268          *
269          * If it tries to use the fpu again, it'll trap and
270          * reload its fp regs.  So we don't have to do a restore
271          * every switch, just a save.
272          *  -- Cort
273          */
274         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
275                 giveup_fpu(prev);
276 #ifdef CONFIG_ALTIVEC
277         /*
278          * If the previous thread used altivec in the last quantum
279          * (thus changing altivec regs) then save them.
280          * We used to check the VRSAVE register but not all apps
281          * set it, so we don't rely on it now (and in fact we need
282          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
283          *
284          * On SMP we always save/restore altivec regs just to avoid the
285          * complexity of changing processors.
286          *  -- Cort
287          */
288         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
289                 giveup_altivec(prev);
290 #endif /* CONFIG_ALTIVEC */
291 #ifdef CONFIG_VSX
292         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
293                 giveup_vsx(prev);
294 #endif /* CONFIG_VSX */
295 #ifdef CONFIG_SPE
296         /*
297          * If the previous thread used spe in the last quantum
298          * (thus changing spe regs) then save them.
299          *
300          * On SMP we always save/restore spe regs just to avoid the
301          * complexity of changing processors.
302          */
303         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
304                 giveup_spe(prev);
305 #endif /* CONFIG_SPE */
306
307 #else  /* CONFIG_SMP */
308 #ifdef CONFIG_ALTIVEC
309         /* Avoid the trap.  On smp this this never happens since
310          * we don't set last_task_used_altivec -- Cort
311          */
312         if (new->thread.regs && last_task_used_altivec == new)
313                 new->thread.regs->msr |= MSR_VEC;
314 #endif /* CONFIG_ALTIVEC */
315 #ifdef CONFIG_VSX
316         if (new->thread.regs && last_task_used_vsx == new)
317                 new->thread.regs->msr |= MSR_VSX;
318 #endif /* CONFIG_VSX */
319 #ifdef CONFIG_SPE
320         /* Avoid the trap.  On smp this this never happens since
321          * we don't set last_task_used_spe
322          */
323         if (new->thread.regs && last_task_used_spe == new)
324                 new->thread.regs->msr |= MSR_SPE;
325 #endif /* CONFIG_SPE */
326
327 #endif /* CONFIG_SMP */
328
329         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
330                 set_dabr(new->thread.dabr);
331
332         new_thread = &new->thread;
333         old_thread = &current->thread;
334
335 #ifdef CONFIG_PPC64
336         /*
337          * Collect processor utilization data per process
338          */
339         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
340                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
341                 long unsigned start_tb, current_tb;
342                 start_tb = old_thread->start_tb;
343                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
344                 old_thread->accum_tb += (current_tb - start_tb);
345                 new_thread->start_tb = current_tb;
346         }
347 #endif
348
349         local_irq_save(flags);
350
351         account_system_vtime(current);
352         account_process_vtime(current);
353         calculate_steal_time();
354
355         /*
356          * We can't take a PMU exception inside _switch() since there is a
357          * window where the kernel stack SLB and the kernel stack are out
358          * of sync. Hard disable here.
359          */
360         hard_irq_disable();
361         last = _switch(old_thread, new_thread);
362
363         local_irq_restore(flags);
364
365         return last;
366 }
367
368 static int instructions_to_print = 16;
369
370 static void show_instructions(struct pt_regs *regs)
371 {
372         int i;
373         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
374                         sizeof(int));
375
376         printk("Instruction dump:");
377
378         for (i = 0; i < instructions_to_print; i++) {
379                 int instr;
380
381                 if (!(i % 8))
382                         printk("\n");
383
384 #if !defined(CONFIG_BOOKE)
385                 /* If executing with the IMMU off, adjust pc rather
386                  * than print XXXXXXXX.
387                  */
388                 if (!(regs->msr & MSR_IR))
389                         pc = (unsigned long)phys_to_virt(pc);
390 #endif
391
392                 /* We use __get_user here *only* to avoid an OOPS on a
393                  * bad address because the pc *should* only be a
394                  * kernel address.
395                  */
396                 if (!__kernel_text_address(pc) ||
397                      __get_user(instr, (unsigned int __user *)pc)) {
398                         printk("XXXXXXXX ");
399                 } else {
400                         if (regs->nip == pc)
401                                 printk("<%08x> ", instr);
402                         else
403                                 printk("%08x ", instr);
404                 }
405
406                 pc += sizeof(int);
407         }
408
409         printk("\n");
410 }
411
412 static struct regbit {
413         unsigned long bit;
414         const char *name;
415 } msr_bits[] = {
416         {MSR_EE,        "EE"},
417         {MSR_PR,        "PR"},
418         {MSR_FP,        "FP"},
419         {MSR_VEC,       "VEC"},
420         {MSR_VSX,       "VSX"},
421         {MSR_ME,        "ME"},
422         {MSR_IR,        "IR"},
423         {MSR_DR,        "DR"},
424         {0,             NULL}
425 };
426
427 static void printbits(unsigned long val, struct regbit *bits)
428 {
429         const char *sep = "";
430
431         printk("<");
432         for (; bits->bit; ++bits)
433                 if (val & bits->bit) {
434                         printk("%s%s", sep, bits->name);
435                         sep = ",";
436                 }
437         printk(">");
438 }
439
440 #ifdef CONFIG_PPC64
441 #define REG             "%016lx"
442 #define REGS_PER_LINE   4
443 #define LAST_VOLATILE   13
444 #else
445 #define REG             "%08lx"
446 #define REGS_PER_LINE   8
447 #define LAST_VOLATILE   12
448 #endif
449
450 void show_regs(struct pt_regs * regs)
451 {
452         int i, trap;
453
454         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
455                regs->nip, regs->link, regs->ctr);
456         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
457                regs, regs->trap, print_tainted(), init_utsname()->release);
458         printk("MSR: "REG" ", regs->msr);
459         printbits(regs->msr, msr_bits);
460         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
461         trap = TRAP(regs);
462         if (trap == 0x300 || trap == 0x600)
463 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
464                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
465 #else
466                 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
467 #endif
468         printk("TASK = %p[%d] '%s' THREAD: %p",
469                current, task_pid_nr(current), current->comm, task_thread_info(current));
470
471 #ifdef CONFIG_SMP
472         printk(" CPU: %d", raw_smp_processor_id());
473 #endif /* CONFIG_SMP */
474
475         for (i = 0;  i < 32;  i++) {
476                 if ((i % REGS_PER_LINE) == 0)
477                         printk("\n" KERN_INFO "GPR%02d: ", i);
478                 printk(REG " ", regs->gpr[i]);
479                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
480                         break;
481         }
482         printk("\n");
483 #ifdef CONFIG_KALLSYMS
484         /*
485          * Lookup NIP late so we have the best change of getting the
486          * above info out without failing
487          */
488         printk("NIP ["REG"] ", regs->nip);
489         print_symbol("%s\n", regs->nip);
490         printk("LR ["REG"] ", regs->link);
491         print_symbol("%s\n", regs->link);
492 #endif
493         show_stack(current, (unsigned long *) regs->gpr[1]);
494         if (!user_mode(regs))
495                 show_instructions(regs);
496 }
497
498 void exit_thread(void)
499 {
500         discard_lazy_cpu_state();
501 }
502
503 void flush_thread(void)
504 {
505 #ifdef CONFIG_PPC64
506         struct thread_info *t = current_thread_info();
507
508         if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
509                 clear_ti_thread_flag(t, TIF_ABI_PENDING);
510                 if (test_ti_thread_flag(t, TIF_32BIT))
511                         clear_ti_thread_flag(t, TIF_32BIT);
512                 else
513                         set_ti_thread_flag(t, TIF_32BIT);
514         }
515 #endif
516
517         discard_lazy_cpu_state();
518
519         if (current->thread.dabr) {
520                 current->thread.dabr = 0;
521                 set_dabr(0);
522         }
523 }
524
525 void
526 release_thread(struct task_struct *t)
527 {
528 }
529
530 /*
531  * This gets called before we allocate a new thread and copy
532  * the current task into it.
533  */
534 void prepare_to_copy(struct task_struct *tsk)
535 {
536         flush_fp_to_thread(current);
537         flush_altivec_to_thread(current);
538         flush_vsx_to_thread(current);
539         flush_spe_to_thread(current);
540 }
541
542 /*
543  * Copy a thread..
544  */
545 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
546                 unsigned long unused, struct task_struct *p,
547                 struct pt_regs *regs)
548 {
549         struct pt_regs *childregs, *kregs;
550         extern void ret_from_fork(void);
551         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
552
553         CHECK_FULL_REGS(regs);
554         /* Copy registers */
555         sp -= sizeof(struct pt_regs);
556         childregs = (struct pt_regs *) sp;
557         *childregs = *regs;
558         if ((childregs->msr & MSR_PR) == 0) {
559                 /* for kernel thread, set `current' and stackptr in new task */
560                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
561 #ifdef CONFIG_PPC32
562                 childregs->gpr[2] = (unsigned long) p;
563 #else
564                 clear_tsk_thread_flag(p, TIF_32BIT);
565 #endif
566                 p->thread.regs = NULL;  /* no user register state */
567         } else {
568                 childregs->gpr[1] = usp;
569                 p->thread.regs = childregs;
570                 if (clone_flags & CLONE_SETTLS) {
571 #ifdef CONFIG_PPC64
572                         if (!test_thread_flag(TIF_32BIT))
573                                 childregs->gpr[13] = childregs->gpr[6];
574                         else
575 #endif
576                                 childregs->gpr[2] = childregs->gpr[6];
577                 }
578         }
579         childregs->gpr[3] = 0;  /* Result from fork() */
580         sp -= STACK_FRAME_OVERHEAD;
581
582         /*
583          * The way this works is that at some point in the future
584          * some task will call _switch to switch to the new task.
585          * That will pop off the stack frame created below and start
586          * the new task running at ret_from_fork.  The new task will
587          * do some house keeping and then return from the fork or clone
588          * system call, using the stack frame created above.
589          */
590         sp -= sizeof(struct pt_regs);
591         kregs = (struct pt_regs *) sp;
592         sp -= STACK_FRAME_OVERHEAD;
593         p->thread.ksp = sp;
594         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
595                                 _ALIGN_UP(sizeof(struct thread_info), 16);
596
597 #ifdef CONFIG_PPC64
598         if (cpu_has_feature(CPU_FTR_SLB)) {
599                 unsigned long sp_vsid;
600                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
601
602                 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
603                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
604                                 << SLB_VSID_SHIFT_1T;
605                 else
606                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
607                                 << SLB_VSID_SHIFT;
608                 sp_vsid |= SLB_VSID_KERNEL | llp;
609                 p->thread.ksp_vsid = sp_vsid;
610         }
611
612         /*
613          * The PPC64 ABI makes use of a TOC to contain function 
614          * pointers.  The function (ret_from_except) is actually a pointer
615          * to the TOC entry.  The first entry is a pointer to the actual
616          * function.
617          */
618         kregs->nip = *((unsigned long *)ret_from_fork);
619 #else
620         kregs->nip = (unsigned long)ret_from_fork;
621 #endif
622
623         return 0;
624 }
625
626 /*
627  * Set up a thread for executing a new program
628  */
629 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
630 {
631 #ifdef CONFIG_PPC64
632         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
633 #endif
634
635         set_fs(USER_DS);
636
637         /*
638          * If we exec out of a kernel thread then thread.regs will not be
639          * set.  Do it now.
640          */
641         if (!current->thread.regs) {
642                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
643                 current->thread.regs = regs - 1;
644         }
645
646         memset(regs->gpr, 0, sizeof(regs->gpr));
647         regs->ctr = 0;
648         regs->link = 0;
649         regs->xer = 0;
650         regs->ccr = 0;
651         regs->gpr[1] = sp;
652
653         /*
654          * We have just cleared all the nonvolatile GPRs, so make
655          * FULL_REGS(regs) return true.  This is necessary to allow
656          * ptrace to examine the thread immediately after exec.
657          */
658         regs->trap &= ~1UL;
659
660 #ifdef CONFIG_PPC32
661         regs->mq = 0;
662         regs->nip = start;
663         regs->msr = MSR_USER;
664 #else
665         if (!test_thread_flag(TIF_32BIT)) {
666                 unsigned long entry, toc;
667
668                 /* start is a relocated pointer to the function descriptor for
669                  * the elf _start routine.  The first entry in the function
670                  * descriptor is the entry address of _start and the second
671                  * entry is the TOC value we need to use.
672                  */
673                 __get_user(entry, (unsigned long __user *)start);
674                 __get_user(toc, (unsigned long __user *)start+1);
675
676                 /* Check whether the e_entry function descriptor entries
677                  * need to be relocated before we can use them.
678                  */
679                 if (load_addr != 0) {
680                         entry += load_addr;
681                         toc   += load_addr;
682                 }
683                 regs->nip = entry;
684                 regs->gpr[2] = toc;
685                 regs->msr = MSR_USER64;
686         } else {
687                 regs->nip = start;
688                 regs->gpr[2] = 0;
689                 regs->msr = MSR_USER32;
690         }
691 #endif
692
693         discard_lazy_cpu_state();
694 #ifdef CONFIG_VSX
695         current->thread.used_vsr = 0;
696 #endif
697         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
698         current->thread.fpscr.val = 0;
699 #ifdef CONFIG_ALTIVEC
700         memset(current->thread.vr, 0, sizeof(current->thread.vr));
701         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
702         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
703         current->thread.vrsave = 0;
704         current->thread.used_vr = 0;
705 #endif /* CONFIG_ALTIVEC */
706 #ifdef CONFIG_SPE
707         memset(current->thread.evr, 0, sizeof(current->thread.evr));
708         current->thread.acc = 0;
709         current->thread.spefscr = 0;
710         current->thread.used_spe = 0;
711 #endif /* CONFIG_SPE */
712 }
713
714 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
715                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
716
717 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
718 {
719         struct pt_regs *regs = tsk->thread.regs;
720
721         /* This is a bit hairy.  If we are an SPE enabled  processor
722          * (have embedded fp) we store the IEEE exception enable flags in
723          * fpexc_mode.  fpexc_mode is also used for setting FP exception
724          * mode (asyn, precise, disabled) for 'Classic' FP. */
725         if (val & PR_FP_EXC_SW_ENABLE) {
726 #ifdef CONFIG_SPE
727                 if (cpu_has_feature(CPU_FTR_SPE)) {
728                         tsk->thread.fpexc_mode = val &
729                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
730                         return 0;
731                 } else {
732                         return -EINVAL;
733                 }
734 #else
735                 return -EINVAL;
736 #endif
737         }
738
739         /* on a CONFIG_SPE this does not hurt us.  The bits that
740          * __pack_fe01 use do not overlap with bits used for
741          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
742          * on CONFIG_SPE implementations are reserved so writing to
743          * them does not change anything */
744         if (val > PR_FP_EXC_PRECISE)
745                 return -EINVAL;
746         tsk->thread.fpexc_mode = __pack_fe01(val);
747         if (regs != NULL && (regs->msr & MSR_FP) != 0)
748                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
749                         | tsk->thread.fpexc_mode;
750         return 0;
751 }
752
753 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
754 {
755         unsigned int val;
756
757         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
758 #ifdef CONFIG_SPE
759                 if (cpu_has_feature(CPU_FTR_SPE))
760                         val = tsk->thread.fpexc_mode;
761                 else
762                         return -EINVAL;
763 #else
764                 return -EINVAL;
765 #endif
766         else
767                 val = __unpack_fe01(tsk->thread.fpexc_mode);
768         return put_user(val, (unsigned int __user *) adr);
769 }
770
771 int set_endian(struct task_struct *tsk, unsigned int val)
772 {
773         struct pt_regs *regs = tsk->thread.regs;
774
775         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
776             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
777                 return -EINVAL;
778
779         if (regs == NULL)
780                 return -EINVAL;
781
782         if (val == PR_ENDIAN_BIG)
783                 regs->msr &= ~MSR_LE;
784         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
785                 regs->msr |= MSR_LE;
786         else
787                 return -EINVAL;
788
789         return 0;
790 }
791
792 int get_endian(struct task_struct *tsk, unsigned long adr)
793 {
794         struct pt_regs *regs = tsk->thread.regs;
795         unsigned int val;
796
797         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
798             !cpu_has_feature(CPU_FTR_REAL_LE))
799                 return -EINVAL;
800
801         if (regs == NULL)
802                 return -EINVAL;
803
804         if (regs->msr & MSR_LE) {
805                 if (cpu_has_feature(CPU_FTR_REAL_LE))
806                         val = PR_ENDIAN_LITTLE;
807                 else
808                         val = PR_ENDIAN_PPC_LITTLE;
809         } else
810                 val = PR_ENDIAN_BIG;
811
812         return put_user(val, (unsigned int __user *)adr);
813 }
814
815 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
816 {
817         tsk->thread.align_ctl = val;
818         return 0;
819 }
820
821 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
822 {
823         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
824 }
825
826 #define TRUNC_PTR(x)    ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
827
828 int sys_clone(unsigned long clone_flags, unsigned long usp,
829               int __user *parent_tidp, void __user *child_threadptr,
830               int __user *child_tidp, int p6,
831               struct pt_regs *regs)
832 {
833         CHECK_FULL_REGS(regs);
834         if (usp == 0)
835                 usp = regs->gpr[1];     /* stack pointer for child */
836 #ifdef CONFIG_PPC64
837         if (test_thread_flag(TIF_32BIT)) {
838                 parent_tidp = TRUNC_PTR(parent_tidp);
839                 child_tidp = TRUNC_PTR(child_tidp);
840         }
841 #endif
842         return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
843 }
844
845 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
846              unsigned long p4, unsigned long p5, unsigned long p6,
847              struct pt_regs *regs)
848 {
849         CHECK_FULL_REGS(regs);
850         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
851 }
852
853 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
854               unsigned long p4, unsigned long p5, unsigned long p6,
855               struct pt_regs *regs)
856 {
857         CHECK_FULL_REGS(regs);
858         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
859                         regs, 0, NULL, NULL);
860 }
861
862 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
863                unsigned long a3, unsigned long a4, unsigned long a5,
864                struct pt_regs *regs)
865 {
866         int error;
867         char *filename;
868
869         filename = getname((char __user *) a0);
870         error = PTR_ERR(filename);
871         if (IS_ERR(filename))
872                 goto out;
873         flush_fp_to_thread(current);
874         flush_altivec_to_thread(current);
875         flush_spe_to_thread(current);
876         error = do_execve(filename, (char __user * __user *) a1,
877                           (char __user * __user *) a2, regs);
878         putname(filename);
879 out:
880         return error;
881 }
882
883 #ifdef CONFIG_IRQSTACKS
884 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
885                                   unsigned long nbytes)
886 {
887         unsigned long stack_page;
888         unsigned long cpu = task_cpu(p);
889
890         /*
891          * Avoid crashing if the stack has overflowed and corrupted
892          * task_cpu(p), which is in the thread_info struct.
893          */
894         if (cpu < NR_CPUS && cpu_possible(cpu)) {
895                 stack_page = (unsigned long) hardirq_ctx[cpu];
896                 if (sp >= stack_page + sizeof(struct thread_struct)
897                     && sp <= stack_page + THREAD_SIZE - nbytes)
898                         return 1;
899
900                 stack_page = (unsigned long) softirq_ctx[cpu];
901                 if (sp >= stack_page + sizeof(struct thread_struct)
902                     && sp <= stack_page + THREAD_SIZE - nbytes)
903                         return 1;
904         }
905         return 0;
906 }
907
908 #else
909 #define valid_irq_stack(sp, p, nb)      0
910 #endif /* CONFIG_IRQSTACKS */
911
912 int validate_sp(unsigned long sp, struct task_struct *p,
913                        unsigned long nbytes)
914 {
915         unsigned long stack_page = (unsigned long)task_stack_page(p);
916
917         if (sp >= stack_page + sizeof(struct thread_struct)
918             && sp <= stack_page + THREAD_SIZE - nbytes)
919                 return 1;
920
921         return valid_irq_stack(sp, p, nbytes);
922 }
923
924 EXPORT_SYMBOL(validate_sp);
925
926 unsigned long get_wchan(struct task_struct *p)
927 {
928         unsigned long ip, sp;
929         int count = 0;
930
931         if (!p || p == current || p->state == TASK_RUNNING)
932                 return 0;
933
934         sp = p->thread.ksp;
935         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
936                 return 0;
937
938         do {
939                 sp = *(unsigned long *)sp;
940                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
941                         return 0;
942                 if (count > 0) {
943                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
944                         if (!in_sched_functions(ip))
945                                 return ip;
946                 }
947         } while (count++ < 16);
948         return 0;
949 }
950
951 static int kstack_depth_to_print = 64;
952
953 void show_stack(struct task_struct *tsk, unsigned long *stack)
954 {
955         unsigned long sp, ip, lr, newsp;
956         int count = 0;
957         int firstframe = 1;
958
959         sp = (unsigned long) stack;
960         if (tsk == NULL)
961                 tsk = current;
962         if (sp == 0) {
963                 if (tsk == current)
964                         asm("mr %0,1" : "=r" (sp));
965                 else
966                         sp = tsk->thread.ksp;
967         }
968
969         lr = 0;
970         printk("Call Trace:\n");
971         do {
972                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
973                         return;
974
975                 stack = (unsigned long *) sp;
976                 newsp = stack[0];
977                 ip = stack[STACK_FRAME_LR_SAVE];
978                 if (!firstframe || ip != lr) {
979                         printk("["REG"] ["REG"] ", sp, ip);
980                         print_symbol("%s", ip);
981                         if (firstframe)
982                                 printk(" (unreliable)");
983                         printk("\n");
984                 }
985                 firstframe = 0;
986
987                 /*
988                  * See if this is an exception frame.
989                  * We look for the "regshere" marker in the current frame.
990                  */
991                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
992                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
993                         struct pt_regs *regs = (struct pt_regs *)
994                                 (sp + STACK_FRAME_OVERHEAD);
995                         printk("--- Exception: %lx", regs->trap);
996                         print_symbol(" at %s\n", regs->nip);
997                         lr = regs->link;
998                         print_symbol("    LR = %s\n", lr);
999                         firstframe = 1;
1000                 }
1001
1002                 sp = newsp;
1003         } while (count++ < kstack_depth_to_print);
1004 }
1005
1006 void dump_stack(void)
1007 {
1008         show_stack(current, NULL);
1009 }
1010 EXPORT_SYMBOL(dump_stack);
1011
1012 #ifdef CONFIG_PPC64
1013 void ppc64_runlatch_on(void)
1014 {
1015         unsigned long ctrl;
1016
1017         if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1018                 HMT_medium();
1019
1020                 ctrl = mfspr(SPRN_CTRLF);
1021                 ctrl |= CTRL_RUNLATCH;
1022                 mtspr(SPRN_CTRLT, ctrl);
1023
1024                 set_thread_flag(TIF_RUNLATCH);
1025         }
1026 }
1027
1028 void ppc64_runlatch_off(void)
1029 {
1030         unsigned long ctrl;
1031
1032         if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1033                 HMT_medium();
1034
1035                 clear_thread_flag(TIF_RUNLATCH);
1036
1037                 ctrl = mfspr(SPRN_CTRLF);
1038                 ctrl &= ~CTRL_RUNLATCH;
1039                 mtspr(SPRN_CTRLT, ctrl);
1040         }
1041 }
1042 #endif
1043
1044 #if THREAD_SHIFT < PAGE_SHIFT
1045
1046 static struct kmem_cache *thread_info_cache;
1047
1048 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1049 {
1050         struct thread_info *ti;
1051
1052         ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1053         if (unlikely(ti == NULL))
1054                 return NULL;
1055 #ifdef CONFIG_DEBUG_STACK_USAGE
1056         memset(ti, 0, THREAD_SIZE);
1057 #endif
1058         return ti;
1059 }
1060
1061 void free_thread_info(struct thread_info *ti)
1062 {
1063         kmem_cache_free(thread_info_cache, ti);
1064 }
1065
1066 void thread_info_cache_init(void)
1067 {
1068         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1069                                               THREAD_SIZE, 0, NULL);
1070         BUG_ON(thread_info_cache == NULL);
1071 }
1072
1073 #endif /* THREAD_SHIFT < PAGE_SHIFT */