1 /* 32 and 64-bit millicode, original author Hewlett-Packard
2 adapted for gcc by Paul Bame <bame@debian.org>
3 and Alan Modra <alan@linuxcare.com.au>.
5 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
7 This file is part of GCC and is released under the terms of
8 of the GNU General Public License as published by the Free Software
9 Foundation; either version 2, or (at your option) any later version.
10 See the file COPYING in the top-level GCC source directory for a copy
16 /* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
17 /******************************************************************************
18 This routine is used on PA2.0 processors when gcc -mno-fpregs is used
25 $$mulI multiplies two single word integers, giving a single
34 sr0 == return space when called externally
43 OTHER REGISTERS AFFECTED:
49 Causes a trap under the following conditions: NONE
50 Changes memory at the following places: NONE
55 Does not create a stack frame
56 Is usable for internal or external microcode
60 Calls other millicode routines via mrp: NONE
61 Calls other millicode routines: NONE
63 ***************************************************************************/
71 #define a0__128a0 zdep a0,24,25,a0
72 #define a0__256a0 zdep a0,23,24,a0
73 #define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
74 #define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
75 #define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
76 #define b_n_ret_t0 b,n LREF(ret_t0)
77 #define b_e_shift b LREF(e_shift)
78 #define b_e_t0ma0 b LREF(e_t0ma0)
79 #define b_e_t0 b LREF(e_t0)
80 #define b_e_t0a0 b LREF(e_t0a0)
81 #define b_e_t02a0 b LREF(e_t02a0)
82 #define b_e_t04a0 b LREF(e_t04a0)
83 #define b_e_2t0 b LREF(e_2t0)
84 #define b_e_2t0a0 b LREF(e_2t0a0)
85 #define b_e_2t04a0 b LREF(e2t04a0)
86 #define b_e_3t0 b LREF(e_3t0)
87 #define b_e_4t0 b LREF(e_4t0)
88 #define b_e_4t0a0 b LREF(e_4t0a0)
89 #define b_e_4t08a0 b LREF(e4t08a0)
90 #define b_e_5t0 b LREF(e_5t0)
91 #define b_e_8t0 b LREF(e_8t0)
92 #define b_e_8t0a0 b LREF(e_8t0a0)
93 #define r__r_a0 add r,a0,r
94 #define r__r_2a0 sh1add a0,r,r
95 #define r__r_4a0 sh2add a0,r,r
96 #define r__r_8a0 sh3add a0,r,r
97 #define r__r_t0 add r,t0,r
98 #define r__r_2t0 sh1add t0,r,r
99 #define r__r_4t0 sh2add t0,r,r
100 #define r__r_8t0 sh3add t0,r,r
101 #define t0__3a0 sh1add a0,a0,t0
102 #define t0__4a0 sh2add a0,0,t0
103 #define t0__5a0 sh2add a0,a0,t0
104 #define t0__8a0 sh3add a0,0,t0
105 #define t0__9a0 sh3add a0,a0,t0
106 #define t0__16a0 zdep a0,27,28,t0
107 #define t0__32a0 zdep a0,26,27,t0
108 #define t0__64a0 zdep a0,25,26,t0
109 #define t0__128a0 zdep a0,24,25,t0
110 #define t0__t0ma0 sub t0,a0,t0
111 #define t0__t0_a0 add t0,a0,t0
112 #define t0__t0_2a0 sh1add a0,t0,t0
113 #define t0__t0_4a0 sh2add a0,t0,t0
114 #define t0__t0_8a0 sh3add a0,t0,t0
115 #define t0__2t0_a0 sh1add t0,a0,t0
116 #define t0__3t0 sh1add t0,t0,t0
117 #define t0__4t0 sh2add t0,0,t0
118 #define t0__4t0_a0 sh2add t0,a0,t0
119 #define t0__5t0 sh2add t0,t0,t0
120 #define t0__8t0 sh3add t0,0,t0
121 #define t0__8t0_a0 sh3add t0,a0,t0
122 #define t0__9t0 sh3add t0,t0,t0
123 #define t0__16t0 zdep t0,27,28,t0
124 #define t0__32t0 zdep t0,26,27,t0
125 #define t0__256a0 zdep a0,23,24,t0
133 .export $$mulI,millicode
135 combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
136 copy 0,r /* zero out the result */
137 xor a0,a1,a0 /* swap a0 & a1 using the */
138 xor a0,a1,a1 /* old xor trick */
141 combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
142 zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
143 sub,> 0,a1,t0 /* otherwise negate both and */
144 combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
146 movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
148 LSYM(l0) r__r_t0 /* add in this partial product */
149 LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
150 LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
151 LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
152 extru a1,23,24,a1 /* a1 >>= 8 ****************** */
154 /*16 insts before this. */
155 /* a0 <<= 8 ************************** */
156 LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
157 LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
158 LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
159 LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
160 LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
161 LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
162 LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
163 LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
164 LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
165 LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
166 LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
167 LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
168 LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
169 LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
170 LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
171 LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
172 LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
173 LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
174 LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
175 LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
176 LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
177 LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
178 LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
179 LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
180 LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
181 LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
182 LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
183 LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
184 LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
185 LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
186 LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
187 LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
188 LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
189 LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
190 LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
191 LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
192 LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
193 LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
194 LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
195 LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
196 LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
197 LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
198 LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
199 LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
200 LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
201 LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
202 LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
203 LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
204 LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
205 LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
206 LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
207 LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
208 LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
209 LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
210 LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
211 LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
212 LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
213 LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
214 LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
215 LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
216 LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
217 LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
218 LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
219 LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
220 LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
221 LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
222 LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
223 LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
224 LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
225 LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
226 LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
227 LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
228 LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
229 LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
230 LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
231 LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
232 LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
233 LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
234 LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
235 LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
236 LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
237 LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
238 LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
239 LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
240 LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
241 LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
242 LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
243 LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
244 LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
245 LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
246 LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
247 LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
248 LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
249 LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
250 LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
251 LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
252 LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
253 LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
254 LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
255 LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
256 LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
257 LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
258 LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
259 LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
260 LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
261 LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
262 LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
263 LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
264 LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
265 LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
266 LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
267 LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
268 LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
269 LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
270 LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
271 LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
272 LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
273 LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
274 LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
275 LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
276 LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
277 LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
278 LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
279 LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
280 LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
281 LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
282 LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
283 LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
284 LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
285 LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
286 LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
287 LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
288 LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
289 LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
290 LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
291 LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
292 LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
293 LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
294 LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
295 LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
296 LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
297 LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
298 LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
299 LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
300 LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
301 LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
302 LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
303 LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
304 LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
305 LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
306 LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
307 LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
308 LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
309 LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
310 LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
311 LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
312 LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
313 LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
314 LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
315 LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
316 LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
317 LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
318 LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
319 LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
320 LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
321 LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
322 LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
323 LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
324 LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
325 LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
326 LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
327 LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
328 LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
329 LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
330 LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
331 LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
332 LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
333 LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
334 LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
335 LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
336 LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
337 LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
338 LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
339 LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
340 LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
341 LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
342 LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
343 LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
344 LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
345 LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
346 LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
347 LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
348 LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
349 LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
350 LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
351 LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
352 LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
353 LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
354 LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
355 LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
356 LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
357 LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
358 LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
359 LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
360 LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
361 LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
362 LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
363 LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
364 LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
365 LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
366 LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
367 LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
368 LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
369 LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
370 LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
371 LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
372 LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
373 LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
374 LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
375 LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
376 LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
377 LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
378 LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
379 LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
380 LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
381 LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
382 LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
383 LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
384 LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
385 LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
386 LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
387 LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
388 LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
389 LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
390 LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
391 LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
392 LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
393 LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
394 LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
395 LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
396 LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
397 LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
398 LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
399 LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
400 LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
401 LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
402 LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
403 LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
404 LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
405 LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
406 LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
407 LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
408 LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
409 LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
410 LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
411 LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
412 /*1040 insts before this. */
413 LSYM(ret_t0) MILLIRET
415 LSYM(e_shift) a1_ne_0_b_l2
416 a0__256a0 /* a0 <<= 8 *********** */
418 LSYM(e_t0ma0) a1_ne_0_b_l0
422 LSYM(e_t0a0) a1_ne_0_b_l0
426 LSYM(e_t02a0) a1_ne_0_b_l0
430 LSYM(e_t04a0) a1_ne_0_b_l0
434 LSYM(e_2t0) a1_ne_0_b_l1
437 LSYM(e_2t0a0) a1_ne_0_b_l0
441 LSYM(e2t04a0) t0__t0_2a0
445 LSYM(e_3t0) a1_ne_0_b_l0
449 LSYM(e_4t0) a1_ne_0_b_l1
452 LSYM(e_4t0a0) a1_ne_0_b_l0
456 LSYM(e4t08a0) t0__t0_2a0
460 LSYM(e_5t0) a1_ne_0_b_l0
464 LSYM(e_8t0) a1_ne_0_b_l1
467 LSYM(e_8t0a0) a1_ne_0_b_l0