]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/ia64/kernel/setup.c
Pull miscellaneous into release branch
[linux-2.6-omap-h63xx.git] / arch / ia64 / kernel / setup.c
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *      Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  *      Rohit Seth <rohit.seth@intel.com>
9  *      Suresh Siddha <suresh.b.siddha@intel.com>
10  *      Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *                      Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth      cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth      fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian   added the support for command line argument
22  * 06/24/99 W.Drummond  added boot_cpu_data.
23  * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/tlbflush.h>
63 #include <asm/unistd.h>
64 #include <asm/hpsim.h>
65
66 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
67 # error "struct cpuinfo_ia64 too big!"
68 #endif
69
70 #ifdef CONFIG_SMP
71 unsigned long __per_cpu_offset[NR_CPUS];
72 EXPORT_SYMBOL(__per_cpu_offset);
73 #endif
74
75 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
77 unsigned long ia64_cycles_per_usec;
78 struct ia64_boot_param *ia64_boot_param;
79 struct screen_info screen_info;
80 unsigned long vga_console_iobase;
81 unsigned long vga_console_membase;
82
83 static struct resource data_resource = {
84         .name   = "Kernel data",
85         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
86 };
87
88 static struct resource code_resource = {
89         .name   = "Kernel code",
90         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
91 };
92
93 static struct resource bss_resource = {
94         .name   = "Kernel bss",
95         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
96 };
97
98 unsigned long ia64_max_cacheline_size;
99
100 int dma_get_cache_alignment(void)
101 {
102         return ia64_max_cacheline_size;
103 }
104 EXPORT_SYMBOL(dma_get_cache_alignment);
105
106 unsigned long ia64_iobase;      /* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
111
112 /*
113  * "flush_icache_range()" needs to know what processor dependent stride size to use
114  * when it makes i-cache(s) coherent with d-caches.
115  */
116 #define I_CACHE_STRIDE_SHIFT    5       /* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
118
119 /*
120  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
121  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
122  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
123  * address of the second buffer must be aligned to (merge_mask+1) in order to be
124  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
125  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126  * page-size of 2^64.
127  */
128 unsigned long ia64_max_iommu_merge_mask = ~0UL;
129 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130
131 /*
132  * We use a special marker for the end of memory and it uses the extra (+1) slot
133  */
134 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
135 int num_rsvd_regions __initdata;
136
137
138 /*
139  * Filter incoming memory segments based on the primitive map created from the boot
140  * parameters. Segments contained in the map are removed from the memory ranges. A
141  * caller-specified function is called with the memory ranges that remain after filtering.
142  * This routine does not assume the incoming segments are sorted.
143  */
144 int __init
145 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
146 {
147         unsigned long range_start, range_end, prev_start;
148         void (*func)(unsigned long, unsigned long, int);
149         int i;
150
151 #if IGNORE_PFN0
152         if (start == PAGE_OFFSET) {
153                 printk(KERN_WARNING "warning: skipping physical page 0\n");
154                 start += PAGE_SIZE;
155                 if (start >= end) return 0;
156         }
157 #endif
158         /*
159          * lowest possible address(walker uses virtual)
160          */
161         prev_start = PAGE_OFFSET;
162         func = arg;
163
164         for (i = 0; i < num_rsvd_regions; ++i) {
165                 range_start = max(start, prev_start);
166                 range_end   = min(end, rsvd_region[i].start);
167
168                 if (range_start < range_end)
169                         call_pernode_memory(__pa(range_start), range_end - range_start, func);
170
171                 /* nothing more available in this segment */
172                 if (range_end == end) return 0;
173
174                 prev_start = rsvd_region[i].end;
175         }
176         /* end of memory marker allows full processing inside loop body */
177         return 0;
178 }
179
180 /*
181  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
182  * are not filtered out.
183  */
184 int __init
185 filter_memory(unsigned long start, unsigned long end, void *arg)
186 {
187         void (*func)(unsigned long, unsigned long, int);
188
189 #if IGNORE_PFN0
190         if (start == PAGE_OFFSET) {
191                 printk(KERN_WARNING "warning: skipping physical page 0\n");
192                 start += PAGE_SIZE;
193                 if (start >= end)
194                         return 0;
195         }
196 #endif
197         func = arg;
198         if (start < end)
199                 call_pernode_memory(__pa(start), end - start, func);
200         return 0;
201 }
202
203 static void __init
204 sort_regions (struct rsvd_region *rsvd_region, int max)
205 {
206         int j;
207
208         /* simple bubble sorting */
209         while (max--) {
210                 for (j = 0; j < max; ++j) {
211                         if (rsvd_region[j].start > rsvd_region[j+1].start) {
212                                 struct rsvd_region tmp;
213                                 tmp = rsvd_region[j];
214                                 rsvd_region[j] = rsvd_region[j + 1];
215                                 rsvd_region[j + 1] = tmp;
216                         }
217                 }
218         }
219 }
220
221 /*
222  * Request address space for all standard resources
223  */
224 static int __init register_memory(void)
225 {
226         code_resource.start = ia64_tpa(_text);
227         code_resource.end   = ia64_tpa(_etext) - 1;
228         data_resource.start = ia64_tpa(_etext);
229         data_resource.end   = ia64_tpa(_edata) - 1;
230         bss_resource.start  = ia64_tpa(__bss_start);
231         bss_resource.end    = ia64_tpa(_end) - 1;
232         efi_initialize_iomem_resources(&code_resource, &data_resource,
233                         &bss_resource);
234
235         return 0;
236 }
237
238 __initcall(register_memory);
239
240
241 #ifdef CONFIG_KEXEC
242 static void __init setup_crashkernel(unsigned long total, int *n)
243 {
244         unsigned long long base = 0, size = 0;
245         int ret;
246
247         ret = parse_crashkernel(boot_command_line, total,
248                         &size, &base);
249         if (ret == 0 && size > 0) {
250                 if (!base) {
251                         sort_regions(rsvd_region, *n);
252                         base = kdump_find_rsvd_region(size,
253                                         rsvd_region, *n);
254                 }
255                 if (base != ~0UL) {
256                         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
257                                         "for crashkernel (System RAM: %ldMB)\n",
258                                         (unsigned long)(size >> 20),
259                                         (unsigned long)(base >> 20),
260                                         (unsigned long)(total >> 20));
261                         rsvd_region[*n].start =
262                                 (unsigned long)__va(base);
263                         rsvd_region[*n].end =
264                                 (unsigned long)__va(base + size);
265                         (*n)++;
266                         crashk_res.start = base;
267                         crashk_res.end = base + size - 1;
268                 }
269         }
270         efi_memmap_res.start = ia64_boot_param->efi_memmap;
271         efi_memmap_res.end = efi_memmap_res.start +
272                 ia64_boot_param->efi_memmap_size;
273         boot_param_res.start = __pa(ia64_boot_param);
274         boot_param_res.end = boot_param_res.start +
275                 sizeof(*ia64_boot_param);
276 }
277 #else
278 static inline void __init setup_crashkernel(unsigned long total, int *n)
279 {}
280 #endif
281
282 /**
283  * reserve_memory - setup reserved memory areas
284  *
285  * Setup the reserved memory areas set aside for the boot parameters,
286  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
287  * see include/asm-ia64/meminit.h if you need to define more.
288  */
289 void __init
290 reserve_memory (void)
291 {
292         int n = 0;
293         unsigned long total_memory;
294
295         /*
296          * none of the entries in this table overlap
297          */
298         rsvd_region[n].start = (unsigned long) ia64_boot_param;
299         rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
300         n++;
301
302         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
303         rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
304         n++;
305
306         rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
307         rsvd_region[n].end   = (rsvd_region[n].start
308                                 + strlen(__va(ia64_boot_param->command_line)) + 1);
309         n++;
310
311         rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
312         rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
313         n++;
314
315 #ifdef CONFIG_BLK_DEV_INITRD
316         if (ia64_boot_param->initrd_start) {
317                 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
318                 rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
319                 n++;
320         }
321 #endif
322
323 #ifdef CONFIG_PROC_VMCORE
324         if (reserve_elfcorehdr(&rsvd_region[n].start,
325                                &rsvd_region[n].end) == 0)
326                 n++;
327 #endif
328
329         total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
330         n++;
331
332         setup_crashkernel(total_memory, &n);
333
334         /* end of memory marker */
335         rsvd_region[n].start = ~0UL;
336         rsvd_region[n].end   = ~0UL;
337         n++;
338
339         num_rsvd_regions = n;
340         BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
341
342         sort_regions(rsvd_region, num_rsvd_regions);
343 }
344
345
346 /**
347  * find_initrd - get initrd parameters from the boot parameter structure
348  *
349  * Grab the initrd start and end from the boot parameter struct given us by
350  * the boot loader.
351  */
352 void __init
353 find_initrd (void)
354 {
355 #ifdef CONFIG_BLK_DEV_INITRD
356         if (ia64_boot_param->initrd_start) {
357                 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
358                 initrd_end   = initrd_start+ia64_boot_param->initrd_size;
359
360                 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
361                        initrd_start, ia64_boot_param->initrd_size);
362         }
363 #endif
364 }
365
366 static void __init
367 io_port_init (void)
368 {
369         unsigned long phys_iobase;
370
371         /*
372          * Set `iobase' based on the EFI memory map or, failing that, the
373          * value firmware left in ar.k0.
374          *
375          * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
376          * the port's virtual address, so ia32_load_state() loads it with a
377          * user virtual address.  But in ia64 mode, glibc uses the
378          * *physical* address in ar.k0 to mmap the appropriate area from
379          * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
380          * cases, user-mode can only use the legacy 0-64K I/O port space.
381          *
382          * ar.k0 is not involved in kernel I/O port accesses, which can use
383          * any of the I/O port spaces and are done via MMIO using the
384          * virtual mmio_base from the appropriate io_space[].
385          */
386         phys_iobase = efi_get_iobase();
387         if (!phys_iobase) {
388                 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
389                 printk(KERN_INFO "No I/O port range found in EFI memory map, "
390                         "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
391         }
392         ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
393         ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
394
395         /* setup legacy IO port space */
396         io_space[0].mmio_base = ia64_iobase;
397         io_space[0].sparse = 1;
398         num_io_spaces = 1;
399 }
400
401 /**
402  * early_console_setup - setup debugging console
403  *
404  * Consoles started here require little enough setup that we can start using
405  * them very early in the boot process, either right after the machine
406  * vector initialization, or even before if the drivers can detect their hw.
407  *
408  * Returns non-zero if a console couldn't be setup.
409  */
410 static inline int __init
411 early_console_setup (char *cmdline)
412 {
413         int earlycons = 0;
414
415 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
416         {
417                 extern int sn_serial_console_early_setup(void);
418                 if (!sn_serial_console_early_setup())
419                         earlycons++;
420         }
421 #endif
422 #ifdef CONFIG_EFI_PCDP
423         if (!efi_setup_pcdp_console(cmdline))
424                 earlycons++;
425 #endif
426         if (!simcons_register())
427                 earlycons++;
428
429         return (earlycons) ? 0 : -1;
430 }
431
432 static inline void
433 mark_bsp_online (void)
434 {
435 #ifdef CONFIG_SMP
436         /* If we register an early console, allow CPU 0 to printk */
437         cpu_set(smp_processor_id(), cpu_online_map);
438 #endif
439 }
440
441 static __initdata int nomca;
442 static __init int setup_nomca(char *s)
443 {
444         nomca = 1;
445         return 0;
446 }
447 early_param("nomca", setup_nomca);
448
449 #ifdef CONFIG_PROC_VMCORE
450 /* elfcorehdr= specifies the location of elf core header
451  * stored by the crashed kernel.
452  */
453 static int __init parse_elfcorehdr(char *arg)
454 {
455         if (!arg)
456                 return -EINVAL;
457
458         elfcorehdr_addr = memparse(arg, &arg);
459         return 0;
460 }
461 early_param("elfcorehdr", parse_elfcorehdr);
462
463 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
464 {
465         unsigned long length;
466
467         /* We get the address using the kernel command line,
468          * but the size is extracted from the EFI tables.
469          * Both address and size are required for reservation
470          * to work properly.
471          */
472
473         if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
474                 return -EINVAL;
475
476         if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
477                 elfcorehdr_addr = ELFCORE_ADDR_MAX;
478                 return -EINVAL;
479         }
480
481         *start = (unsigned long)__va(elfcorehdr_addr);
482         *end = *start + length;
483         return 0;
484 }
485
486 #endif /* CONFIG_PROC_VMCORE */
487
488 void __init
489 setup_arch (char **cmdline_p)
490 {
491         unw_init();
492
493         ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
494
495         *cmdline_p = __va(ia64_boot_param->command_line);
496         strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
497
498         efi_init();
499         io_port_init();
500
501 #ifdef CONFIG_IA64_GENERIC
502         /* machvec needs to be parsed from the command line
503          * before parse_early_param() is called to ensure
504          * that ia64_mv is initialised before any command line
505          * settings may cause console setup to occur
506          */
507         machvec_init_from_cmdline(*cmdline_p);
508 #endif
509
510         parse_early_param();
511
512         if (early_console_setup(*cmdline_p) == 0)
513                 mark_bsp_online();
514
515 #ifdef CONFIG_ACPI
516         /* Initialize the ACPI boot-time table parser */
517         acpi_table_init();
518 # ifdef CONFIG_ACPI_NUMA
519         acpi_numa_init();
520         per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
521                 32 : cpus_weight(early_cpu_possible_map)), additional_cpus);
522 # endif
523 #else
524 # ifdef CONFIG_SMP
525         smp_build_cpu_map();    /* happens, e.g., with the Ski simulator */
526 # endif
527 #endif /* CONFIG_APCI_BOOT */
528
529         find_memory();
530
531         /* process SAL system table: */
532         ia64_sal_init(__va(efi.sal_systab));
533
534 #ifdef CONFIG_SMP
535         cpu_physical_id(0) = hard_smp_processor_id();
536 #endif
537
538         cpu_init();     /* initialize the bootstrap CPU */
539         mmu_context_init();     /* initialize context_id bitmap */
540
541         check_sal_cache_flush();
542
543 #ifdef CONFIG_ACPI
544         acpi_boot_init();
545 #endif
546
547 #ifdef CONFIG_VT
548         if (!conswitchp) {
549 # if defined(CONFIG_DUMMY_CONSOLE)
550                 conswitchp = &dummy_con;
551 # endif
552 # if defined(CONFIG_VGA_CONSOLE)
553                 /*
554                  * Non-legacy systems may route legacy VGA MMIO range to system
555                  * memory.  vga_con probes the MMIO hole, so memory looks like
556                  * a VGA device to it.  The EFI memory map can tell us if it's
557                  * memory so we can avoid this problem.
558                  */
559                 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
560                         conswitchp = &vga_con;
561 # endif
562         }
563 #endif
564
565         /* enable IA-64 Machine Check Abort Handling unless disabled */
566         if (!nomca)
567                 ia64_mca_init();
568
569         platform_setup(cmdline_p);
570         paging_init();
571 }
572
573 /*
574  * Display cpu info for all CPUs.
575  */
576 static int
577 show_cpuinfo (struct seq_file *m, void *v)
578 {
579 #ifdef CONFIG_SMP
580 #       define lpj      c->loops_per_jiffy
581 #       define cpunum   c->cpu
582 #else
583 #       define lpj      loops_per_jiffy
584 #       define cpunum   0
585 #endif
586         static struct {
587                 unsigned long mask;
588                 const char *feature_name;
589         } feature_bits[] = {
590                 { 1UL << 0, "branchlong" },
591                 { 1UL << 1, "spontaneous deferral"},
592                 { 1UL << 2, "16-byte atomic ops" }
593         };
594         char features[128], *cp, *sep;
595         struct cpuinfo_ia64 *c = v;
596         unsigned long mask;
597         unsigned long proc_freq;
598         int i, size;
599
600         mask = c->features;
601
602         /* build the feature string: */
603         memcpy(features, "standard", 9);
604         cp = features;
605         size = sizeof(features);
606         sep = "";
607         for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
608                 if (mask & feature_bits[i].mask) {
609                         cp += snprintf(cp, size, "%s%s", sep,
610                                        feature_bits[i].feature_name),
611                         sep = ", ";
612                         mask &= ~feature_bits[i].mask;
613                         size = sizeof(features) - (cp - features);
614                 }
615         }
616         if (mask && size > 1) {
617                 /* print unknown features as a hex value */
618                 snprintf(cp, size, "%s0x%lx", sep, mask);
619         }
620
621         proc_freq = cpufreq_quick_get(cpunum);
622         if (!proc_freq)
623                 proc_freq = c->proc_freq / 1000;
624
625         seq_printf(m,
626                    "processor  : %d\n"
627                    "vendor     : %s\n"
628                    "arch       : IA-64\n"
629                    "family     : %u\n"
630                    "model      : %u\n"
631                    "model name : %s\n"
632                    "revision   : %u\n"
633                    "archrev    : %u\n"
634                    "features   : %s\n"
635                    "cpu number : %lu\n"
636                    "cpu regs   : %u\n"
637                    "cpu MHz    : %lu.%03lu\n"
638                    "itc MHz    : %lu.%06lu\n"
639                    "BogoMIPS   : %lu.%02lu\n",
640                    cpunum, c->vendor, c->family, c->model,
641                    c->model_name, c->revision, c->archrev,
642                    features, c->ppn, c->number,
643                    proc_freq / 1000, proc_freq % 1000,
644                    c->itc_freq / 1000000, c->itc_freq % 1000000,
645                    lpj*HZ/500000, (lpj*HZ/5000) % 100);
646 #ifdef CONFIG_SMP
647         seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
648         if (c->socket_id != -1)
649                 seq_printf(m, "physical id: %u\n", c->socket_id);
650         if (c->threads_per_core > 1 || c->cores_per_socket > 1)
651                 seq_printf(m,
652                            "core id    : %u\n"
653                            "thread id  : %u\n",
654                            c->core_id, c->thread_id);
655 #endif
656         seq_printf(m,"\n");
657
658         return 0;
659 }
660
661 static void *
662 c_start (struct seq_file *m, loff_t *pos)
663 {
664 #ifdef CONFIG_SMP
665         while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
666                 ++*pos;
667 #endif
668         return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
669 }
670
671 static void *
672 c_next (struct seq_file *m, void *v, loff_t *pos)
673 {
674         ++*pos;
675         return c_start(m, pos);
676 }
677
678 static void
679 c_stop (struct seq_file *m, void *v)
680 {
681 }
682
683 const struct seq_operations cpuinfo_op = {
684         .start =        c_start,
685         .next =         c_next,
686         .stop =         c_stop,
687         .show =         show_cpuinfo
688 };
689
690 #define MAX_BRANDS      8
691 static char brandname[MAX_BRANDS][128];
692
693 static char * __cpuinit
694 get_model_name(__u8 family, __u8 model)
695 {
696         static int overflow;
697         char brand[128];
698         int i;
699
700         memcpy(brand, "Unknown", 8);
701         if (ia64_pal_get_brand_info(brand)) {
702                 if (family == 0x7)
703                         memcpy(brand, "Merced", 7);
704                 else if (family == 0x1f) switch (model) {
705                         case 0: memcpy(brand, "McKinley", 9); break;
706                         case 1: memcpy(brand, "Madison", 8); break;
707                         case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
708                 }
709         }
710         for (i = 0; i < MAX_BRANDS; i++)
711                 if (strcmp(brandname[i], brand) == 0)
712                         return brandname[i];
713         for (i = 0; i < MAX_BRANDS; i++)
714                 if (brandname[i][0] == '\0')
715                         return strcpy(brandname[i], brand);
716         if (overflow++ == 0)
717                 printk(KERN_ERR
718                        "%s: Table overflow. Some processor model information will be missing\n",
719                        __func__);
720         return "Unknown";
721 }
722
723 static void __cpuinit
724 identify_cpu (struct cpuinfo_ia64 *c)
725 {
726         union {
727                 unsigned long bits[5];
728                 struct {
729                         /* id 0 & 1: */
730                         char vendor[16];
731
732                         /* id 2 */
733                         u64 ppn;                /* processor serial number */
734
735                         /* id 3: */
736                         unsigned number         :  8;
737                         unsigned revision       :  8;
738                         unsigned model          :  8;
739                         unsigned family         :  8;
740                         unsigned archrev        :  8;
741                         unsigned reserved       : 24;
742
743                         /* id 4: */
744                         u64 features;
745                 } field;
746         } cpuid;
747         pal_vm_info_1_u_t vm1;
748         pal_vm_info_2_u_t vm2;
749         pal_status_t status;
750         unsigned long impl_va_msb = 50, phys_addr_size = 44;    /* Itanium defaults */
751         int i;
752         for (i = 0; i < 5; ++i)
753                 cpuid.bits[i] = ia64_get_cpuid(i);
754
755         memcpy(c->vendor, cpuid.field.vendor, 16);
756 #ifdef CONFIG_SMP
757         c->cpu = smp_processor_id();
758
759         /* below default values will be overwritten  by identify_siblings() 
760          * for Multi-Threading/Multi-Core capable CPUs
761          */
762         c->threads_per_core = c->cores_per_socket = c->num_log = 1;
763         c->socket_id = -1;
764
765         identify_siblings(c);
766
767         if (c->threads_per_core > smp_num_siblings)
768                 smp_num_siblings = c->threads_per_core;
769 #endif
770         c->ppn = cpuid.field.ppn;
771         c->number = cpuid.field.number;
772         c->revision = cpuid.field.revision;
773         c->model = cpuid.field.model;
774         c->family = cpuid.field.family;
775         c->archrev = cpuid.field.archrev;
776         c->features = cpuid.field.features;
777         c->model_name = get_model_name(c->family, c->model);
778
779         status = ia64_pal_vm_summary(&vm1, &vm2);
780         if (status == PAL_STATUS_SUCCESS) {
781                 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
782                 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
783         }
784         c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
785         c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
786 }
787
788 void __init
789 setup_per_cpu_areas (void)
790 {
791         /* start_kernel() requires this... */
792 #ifdef CONFIG_ACPI_HOTPLUG_CPU
793         prefill_possible_map();
794 #endif
795 }
796
797 /*
798  * Calculate the max. cache line size.
799  *
800  * In addition, the minimum of the i-cache stride sizes is calculated for
801  * "flush_icache_range()".
802  */
803 static void __cpuinit
804 get_max_cacheline_size (void)
805 {
806         unsigned long line_size, max = 1;
807         u64 l, levels, unique_caches;
808         pal_cache_config_info_t cci;
809         s64 status;
810
811         status = ia64_pal_cache_summary(&levels, &unique_caches);
812         if (status != 0) {
813                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
814                        __func__, status);
815                 max = SMP_CACHE_BYTES;
816                 /* Safest setup for "flush_icache_range()" */
817                 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
818                 goto out;
819         }
820
821         for (l = 0; l < levels; ++l) {
822                 status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
823                                                     &cci);
824                 if (status != 0) {
825                         printk(KERN_ERR
826                                "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
827                                __func__, l, status);
828                         max = SMP_CACHE_BYTES;
829                         /* The safest setup for "flush_icache_range()" */
830                         cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
831                         cci.pcci_unified = 1;
832                 }
833                 line_size = 1 << cci.pcci_line_size;
834                 if (line_size > max)
835                         max = line_size;
836                 if (!cci.pcci_unified) {
837                         status = ia64_pal_cache_config_info(l,
838                                                     /* cache_type (instruction)= */ 1,
839                                                     &cci);
840                         if (status != 0) {
841                                 printk(KERN_ERR
842                                 "%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
843                                         __func__, l, status);
844                                 /* The safest setup for "flush_icache_range()" */
845                                 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
846                         }
847                 }
848                 if (cci.pcci_stride < ia64_i_cache_stride_shift)
849                         ia64_i_cache_stride_shift = cci.pcci_stride;
850         }
851   out:
852         if (max > ia64_max_cacheline_size)
853                 ia64_max_cacheline_size = max;
854 }
855
856 /*
857  * cpu_init() initializes state that is per-CPU.  This function acts
858  * as a 'CPU state barrier', nothing should get across.
859  */
860 void __cpuinit
861 cpu_init (void)
862 {
863         extern void __cpuinit ia64_mmu_init (void *);
864         static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
865         unsigned long num_phys_stacked;
866         pal_vm_info_2_u_t vmi;
867         unsigned int max_ctx;
868         struct cpuinfo_ia64 *cpu_info;
869         void *cpu_data;
870
871         cpu_data = per_cpu_init();
872 #ifdef CONFIG_SMP
873         /*
874          * insert boot cpu into sibling and core mapes
875          * (must be done after per_cpu area is setup)
876          */
877         if (smp_processor_id() == 0) {
878                 cpu_set(0, per_cpu(cpu_sibling_map, 0));
879                 cpu_set(0, cpu_core_map[0]);
880         }
881 #endif
882
883         /*
884          * We set ar.k3 so that assembly code in MCA handler can compute
885          * physical addresses of per cpu variables with a simple:
886          *   phys = ar.k3 + &per_cpu_var
887          */
888         ia64_set_kr(IA64_KR_PER_CPU_DATA,
889                     ia64_tpa(cpu_data) - (long) __per_cpu_start);
890
891         get_max_cacheline_size();
892
893         /*
894          * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
895          * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
896          * depends on the data returned by identify_cpu().  We break the dependency by
897          * accessing cpu_data() through the canonical per-CPU address.
898          */
899         cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
900         identify_cpu(cpu_info);
901
902 #ifdef CONFIG_MCKINLEY
903         {
904 #               define FEATURE_SET 16
905                 struct ia64_pal_retval iprv;
906
907                 if (cpu_info->family == 0x1f) {
908                         PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
909                         if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
910                                 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
911                                               (iprv.v1 | 0x80), FEATURE_SET, 0);
912                 }
913         }
914 #endif
915
916         /* Clear the stack memory reserved for pt_regs: */
917         memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
918
919         ia64_set_kr(IA64_KR_FPU_OWNER, 0);
920
921         /*
922          * Initialize the page-table base register to a global
923          * directory with all zeroes.  This ensure that we can handle
924          * TLB-misses to user address-space even before we created the
925          * first user address-space.  This may happen, e.g., due to
926          * aggressive use of lfetch.fault.
927          */
928         ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
929
930         /*
931          * Initialize default control register to defer speculative faults except
932          * for those arising from TLB misses, which are not deferred.  The
933          * kernel MUST NOT depend on a particular setting of these bits (in other words,
934          * the kernel must have recovery code for all speculative accesses).  Turn on
935          * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
936          * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
937          * be fine).
938          */
939         ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
940                                         | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
941         atomic_inc(&init_mm.mm_count);
942         current->active_mm = &init_mm;
943         if (current->mm)
944                 BUG();
945
946         ia64_mmu_init(ia64_imva(cpu_data));
947         ia64_mca_cpu_init(ia64_imva(cpu_data));
948
949 #ifdef CONFIG_IA32_SUPPORT
950         ia32_cpu_init();
951 #endif
952
953         /* Clear ITC to eliminate sched_clock() overflows in human time.  */
954         ia64_set_itc(0);
955
956         /* disable all local interrupt sources: */
957         ia64_set_itv(1 << 16);
958         ia64_set_lrr0(1 << 16);
959         ia64_set_lrr1(1 << 16);
960         ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
961         ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
962
963         /* clear TPR & XTP to enable all interrupt classes: */
964         ia64_setreg(_IA64_REG_CR_TPR, 0);
965
966         /* Clear any pending interrupts left by SAL/EFI */
967         while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
968                 ia64_eoi();
969
970 #ifdef CONFIG_SMP
971         normal_xtp();
972 #endif
973
974         /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
975         if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
976                 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
977                 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
978         } else {
979                 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
980                 max_ctx = (1U << 15) - 1;       /* use architected minimum */
981         }
982         while (max_ctx < ia64_ctx.max_ctx) {
983                 unsigned int old = ia64_ctx.max_ctx;
984                 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
985                         break;
986         }
987
988         if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
989                 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
990                        "stacked regs\n");
991                 num_phys_stacked = 96;
992         }
993         /* size of physical stacked register partition plus 8 bytes: */
994         if (num_phys_stacked > max_num_phys_stacked) {
995                 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
996                 max_num_phys_stacked = num_phys_stacked;
997         }
998         platform_cpu_init();
999         pm_idle = default_idle;
1000 }
1001
1002 void __init
1003 check_bugs (void)
1004 {
1005         ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1006                                (unsigned long) __end___mckinley_e9_bundles);
1007 }
1008
1009 static int __init run_dmi_scan(void)
1010 {
1011         dmi_scan_machine();
1012         return 0;
1013 }
1014 core_initcall(run_dmi_scan);