]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/ia64/kernel/mca.c
Pull nptcg into release branch
[linux-2.6-omap-h63xx.git] / arch / ia64 / kernel / mca.c
1 /*
2  * File:        mca.c
3  * Purpose:     Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *            added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *            errors, completed code for logging of corrected & uncorrected
33  *            machine check errors, and updated for conformance with Nov. 2000
34  *            revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *            set SAL default return values, changed error record structure to
39  *            linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *            GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *            Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *            smp_call_function() must not be called from interrupt context
49  *            (can deadlock on tasklist_lock).
50  *            Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *            Avoid deadlock when using printk() for MCA and INIT records.
54  *            Delete all record printing code, moved to salinfo_decode in user
55  *            space.  Mark variables and functions static where possible.
56  *            Delete dead variables and functions.  Reorder to remove the need
57  *            for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *            state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *            Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *            Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *            Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
87
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
91 #include <asm/page.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
94 #include <asm/sal.h>
95 #include <asm/mca.h>
96 #include <asm/kexec.h>
97
98 #include <asm/irq.h>
99 #include <asm/hw_irq.h>
100 #include <asm/tlb.h>
101
102 #include "mca_drv.h"
103 #include "entry.h"
104
105 #if defined(IA64_MCA_DEBUG_INFO)
106 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
107 #else
108 # define IA64_MCA_DEBUG(fmt...)
109 #endif
110
111 /* Used by mca_asm.S */
112 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
113 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
115 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
116 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
117
118 unsigned long __per_cpu_mca[NR_CPUS];
119
120 /* In mca_asm.S */
121 extern void                     ia64_os_init_dispatch_monarch (void);
122 extern void                     ia64_os_init_dispatch_slave (void);
123
124 static int monarch_cpu = -1;
125
126 static ia64_mc_info_t           ia64_mc_info;
127
128 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
129 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
130 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
131 #define CPE_HISTORY_LENGTH    5
132 #define CMC_HISTORY_LENGTH    5
133
134 #ifdef CONFIG_ACPI
135 static struct timer_list cpe_poll_timer;
136 #endif
137 static struct timer_list cmc_poll_timer;
138 /*
139  * This variable tells whether we are currently in polling mode.
140  * Start with this in the wrong state so we won't play w/ timers
141  * before the system is ready.
142  */
143 static int cmc_polling_enabled = 1;
144
145 /*
146  * Clearing this variable prevents CPE polling from getting activated
147  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
148  * but encounters problems retrieving CPE logs.  This should only be
149  * necessary for debugging.
150  */
151 static int cpe_poll_enabled = 1;
152
153 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
154
155 static int mca_init __initdata;
156
157 /*
158  * limited & delayed printing support for MCA/INIT handler
159  */
160
161 #define mprintk(fmt...) ia64_mca_printk(fmt)
162
163 #define MLOGBUF_SIZE (512+256*NR_CPUS)
164 #define MLOGBUF_MSGMAX 256
165 static char mlogbuf[MLOGBUF_SIZE];
166 static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
167 static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
168 static unsigned long mlogbuf_start;
169 static unsigned long mlogbuf_end;
170 static unsigned int mlogbuf_finished = 0;
171 static unsigned long mlogbuf_timestamp = 0;
172
173 static int loglevel_save = -1;
174 #define BREAK_LOGLEVEL(__console_loglevel)              \
175         oops_in_progress = 1;                           \
176         if (loglevel_save < 0)                          \
177                 loglevel_save = __console_loglevel;     \
178         __console_loglevel = 15;
179
180 #define RESTORE_LOGLEVEL(__console_loglevel)            \
181         if (loglevel_save >= 0) {                       \
182                 __console_loglevel = loglevel_save;     \
183                 loglevel_save = -1;                     \
184         }                                               \
185         mlogbuf_finished = 0;                           \
186         oops_in_progress = 0;
187
188 /*
189  * Push messages into buffer, print them later if not urgent.
190  */
191 void ia64_mca_printk(const char *fmt, ...)
192 {
193         va_list args;
194         int printed_len;
195         char temp_buf[MLOGBUF_MSGMAX];
196         char *p;
197
198         va_start(args, fmt);
199         printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
200         va_end(args);
201
202         /* Copy the output into mlogbuf */
203         if (oops_in_progress) {
204                 /* mlogbuf was abandoned, use printk directly instead. */
205                 printk(temp_buf);
206         } else {
207                 spin_lock(&mlogbuf_wlock);
208                 for (p = temp_buf; *p; p++) {
209                         unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
210                         if (next != mlogbuf_start) {
211                                 mlogbuf[mlogbuf_end] = *p;
212                                 mlogbuf_end = next;
213                         } else {
214                                 /* buffer full */
215                                 break;
216                         }
217                 }
218                 mlogbuf[mlogbuf_end] = '\0';
219                 spin_unlock(&mlogbuf_wlock);
220         }
221 }
222 EXPORT_SYMBOL(ia64_mca_printk);
223
224 /*
225  * Print buffered messages.
226  *  NOTE: call this after returning normal context. (ex. from salinfod)
227  */
228 void ia64_mlogbuf_dump(void)
229 {
230         char temp_buf[MLOGBUF_MSGMAX];
231         char *p;
232         unsigned long index;
233         unsigned long flags;
234         unsigned int printed_len;
235
236         /* Get output from mlogbuf */
237         while (mlogbuf_start != mlogbuf_end) {
238                 temp_buf[0] = '\0';
239                 p = temp_buf;
240                 printed_len = 0;
241
242                 spin_lock_irqsave(&mlogbuf_rlock, flags);
243
244                 index = mlogbuf_start;
245                 while (index != mlogbuf_end) {
246                         *p = mlogbuf[index];
247                         index = (index + 1) % MLOGBUF_SIZE;
248                         if (!*p)
249                                 break;
250                         p++;
251                         if (++printed_len >= MLOGBUF_MSGMAX - 1)
252                                 break;
253                 }
254                 *p = '\0';
255                 if (temp_buf[0])
256                         printk(temp_buf);
257                 mlogbuf_start = index;
258
259                 mlogbuf_timestamp = 0;
260                 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
261         }
262 }
263 EXPORT_SYMBOL(ia64_mlogbuf_dump);
264
265 /*
266  * Call this if system is going to down or if immediate flushing messages to
267  * console is required. (ex. recovery was failed, crash dump is going to be
268  * invoked, long-wait rendezvous etc.)
269  *  NOTE: this should be called from monarch.
270  */
271 static void ia64_mlogbuf_finish(int wait)
272 {
273         BREAK_LOGLEVEL(console_loglevel);
274
275         spin_lock_init(&mlogbuf_rlock);
276         ia64_mlogbuf_dump();
277         printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
278                 "MCA/INIT might be dodgy or fail.\n");
279
280         if (!wait)
281                 return;
282
283         /* wait for console */
284         printk("Delaying for 5 seconds...\n");
285         udelay(5*1000000);
286
287         mlogbuf_finished = 1;
288 }
289
290 /*
291  * Print buffered messages from INIT context.
292  */
293 static void ia64_mlogbuf_dump_from_init(void)
294 {
295         if (mlogbuf_finished)
296                 return;
297
298         if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
299                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
300                         " and the system seems to be messed up.\n");
301                 ia64_mlogbuf_finish(0);
302                 return;
303         }
304
305         if (!spin_trylock(&mlogbuf_rlock)) {
306                 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
307                         "Generated messages other than stack dump will be "
308                         "buffered to mlogbuf and will be printed later.\n");
309                 printk(KERN_ERR "INIT: If messages would not printed after "
310                         "this INIT, wait 30sec and assert INIT again.\n");
311                 if (!mlogbuf_timestamp)
312                         mlogbuf_timestamp = jiffies;
313                 return;
314         }
315         spin_unlock(&mlogbuf_rlock);
316         ia64_mlogbuf_dump();
317 }
318
319 static void inline
320 ia64_mca_spin(const char *func)
321 {
322         if (monarch_cpu == smp_processor_id())
323                 ia64_mlogbuf_finish(0);
324         mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
325         while (1)
326                 cpu_relax();
327 }
328 /*
329  * IA64_MCA log support
330  */
331 #define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
332 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
333
334 typedef struct ia64_state_log_s
335 {
336         spinlock_t      isl_lock;
337         int             isl_index;
338         unsigned long   isl_count;
339         ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
340 } ia64_state_log_t;
341
342 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
343
344 #define IA64_LOG_ALLOCATE(it, size) \
345         {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
346                 (ia64_err_rec_t *)alloc_bootmem(size); \
347         ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
348                 (ia64_err_rec_t *)alloc_bootmem(size);}
349 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
350 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
351 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
352 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
353 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
354 #define IA64_LOG_INDEX_INC(it) \
355     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
356     ia64_state_log[it].isl_count++;}
357 #define IA64_LOG_INDEX_DEC(it) \
358     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
359 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
360 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
361 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
362
363 /*
364  * ia64_log_init
365  *      Reset the OS ia64 log buffer
366  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
367  * Outputs      :       None
368  */
369 static void __init
370 ia64_log_init(int sal_info_type)
371 {
372         u64     max_size = 0;
373
374         IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
375         IA64_LOG_LOCK_INIT(sal_info_type);
376
377         // SAL will tell us the maximum size of any error record of this type
378         max_size = ia64_sal_get_state_info_size(sal_info_type);
379         if (!max_size)
380                 /* alloc_bootmem() doesn't like zero-sized allocations! */
381                 return;
382
383         // set up OS data structures to hold error info
384         IA64_LOG_ALLOCATE(sal_info_type, max_size);
385         memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
386         memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
387 }
388
389 /*
390  * ia64_log_get
391  *
392  *      Get the current MCA log from SAL and copy it into the OS log buffer.
393  *
394  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
395  *              irq_safe    whether you can use printk at this point
396  *  Outputs :   size        (total record length)
397  *              *buffer     (ptr to error record)
398  *
399  */
400 static u64
401 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
402 {
403         sal_log_record_header_t     *log_buffer;
404         u64                         total_len = 0;
405         unsigned long               s;
406
407         IA64_LOG_LOCK(sal_info_type);
408
409         /* Get the process state information */
410         log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
411
412         total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
413
414         if (total_len) {
415                 IA64_LOG_INDEX_INC(sal_info_type);
416                 IA64_LOG_UNLOCK(sal_info_type);
417                 if (irq_safe) {
418                         IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
419                                        __func__, sal_info_type, total_len);
420                 }
421                 *buffer = (u8 *) log_buffer;
422                 return total_len;
423         } else {
424                 IA64_LOG_UNLOCK(sal_info_type);
425                 return 0;
426         }
427 }
428
429 /*
430  *  ia64_mca_log_sal_error_record
431  *
432  *  This function retrieves a specified error record type from SAL
433  *  and wakes up any processes waiting for error records.
434  *
435  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
436  *              FIXME: remove MCA and irq_safe.
437  */
438 static void
439 ia64_mca_log_sal_error_record(int sal_info_type)
440 {
441         u8 *buffer;
442         sal_log_record_header_t *rh;
443         u64 size;
444         int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
445 #ifdef IA64_MCA_DEBUG_INFO
446         static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
447 #endif
448
449         size = ia64_log_get(sal_info_type, &buffer, irq_safe);
450         if (!size)
451                 return;
452
453         salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
454
455         if (irq_safe)
456                 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
457                         smp_processor_id(),
458                         sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
459
460         /* Clear logs from corrected errors in case there's no user-level logger */
461         rh = (sal_log_record_header_t *)buffer;
462         if (rh->severity == sal_log_severity_corrected)
463                 ia64_sal_clear_state_info(sal_info_type);
464 }
465
466 /*
467  * search_mca_table
468  *  See if the MCA surfaced in an instruction range
469  *  that has been tagged as recoverable.
470  *
471  *  Inputs
472  *      first   First address range to check
473  *      last    Last address range to check
474  *      ip      Instruction pointer, address we are looking for
475  *
476  * Return value:
477  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
478  */
479 int
480 search_mca_table (const struct mca_table_entry *first,
481                 const struct mca_table_entry *last,
482                 unsigned long ip)
483 {
484         const struct mca_table_entry *curr;
485         u64 curr_start, curr_end;
486
487         curr = first;
488         while (curr <= last) {
489                 curr_start = (u64) &curr->start_addr + curr->start_addr;
490                 curr_end = (u64) &curr->end_addr + curr->end_addr;
491
492                 if ((ip >= curr_start) && (ip <= curr_end)) {
493                         return 1;
494                 }
495                 curr++;
496         }
497         return 0;
498 }
499
500 /* Given an address, look for it in the mca tables. */
501 int mca_recover_range(unsigned long addr)
502 {
503         extern struct mca_table_entry __start___mca_table[];
504         extern struct mca_table_entry __stop___mca_table[];
505
506         return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
507 }
508 EXPORT_SYMBOL_GPL(mca_recover_range);
509
510 #ifdef CONFIG_ACPI
511
512 int cpe_vector = -1;
513 int ia64_cpe_irq = -1;
514
515 static irqreturn_t
516 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
517 {
518         static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
519         static int              index;
520         static DEFINE_SPINLOCK(cpe_history_lock);
521
522         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
523                        __func__, cpe_irq, smp_processor_id());
524
525         /* SAL spec states this should run w/ interrupts enabled */
526         local_irq_enable();
527
528         spin_lock(&cpe_history_lock);
529         if (!cpe_poll_enabled && cpe_vector >= 0) {
530
531                 int i, count = 1; /* we know 1 happened now */
532                 unsigned long now = jiffies;
533
534                 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
535                         if (now - cpe_history[i] <= HZ)
536                                 count++;
537                 }
538
539                 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
540                 if (count >= CPE_HISTORY_LENGTH) {
541
542                         cpe_poll_enabled = 1;
543                         spin_unlock(&cpe_history_lock);
544                         disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
545
546                         /*
547                          * Corrected errors will still be corrected, but
548                          * make sure there's a log somewhere that indicates
549                          * something is generating more than we can handle.
550                          */
551                         printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
552
553                         mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
554
555                         /* lock already released, get out now */
556                         goto out;
557                 } else {
558                         cpe_history[index++] = now;
559                         if (index == CPE_HISTORY_LENGTH)
560                                 index = 0;
561                 }
562         }
563         spin_unlock(&cpe_history_lock);
564 out:
565         /* Get the CPE error record and log it */
566         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
567
568         return IRQ_HANDLED;
569 }
570
571 #endif /* CONFIG_ACPI */
572
573 #ifdef CONFIG_ACPI
574 /*
575  * ia64_mca_register_cpev
576  *
577  *  Register the corrected platform error vector with SAL.
578  *
579  *  Inputs
580  *      cpev        Corrected Platform Error Vector number
581  *
582  *  Outputs
583  *      None
584  */
585 void
586 ia64_mca_register_cpev (int cpev)
587 {
588         /* Register the CPE interrupt vector with SAL */
589         struct ia64_sal_retval isrv;
590
591         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
592         if (isrv.status) {
593                 printk(KERN_ERR "Failed to register Corrected Platform "
594                        "Error interrupt vector with SAL (status %ld)\n", isrv.status);
595                 return;
596         }
597
598         IA64_MCA_DEBUG("%s: corrected platform error "
599                        "vector %#x registered\n", __func__, cpev);
600 }
601 #endif /* CONFIG_ACPI */
602
603 /*
604  * ia64_mca_cmc_vector_setup
605  *
606  *  Setup the corrected machine check vector register in the processor.
607  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
608  *  This function is invoked on a per-processor basis.
609  *
610  * Inputs
611  *      None
612  *
613  * Outputs
614  *      None
615  */
616 void __cpuinit
617 ia64_mca_cmc_vector_setup (void)
618 {
619         cmcv_reg_t      cmcv;
620
621         cmcv.cmcv_regval        = 0;
622         cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
623         cmcv.cmcv_vector        = IA64_CMC_VECTOR;
624         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
625
626         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
627                        __func__, smp_processor_id(), IA64_CMC_VECTOR);
628
629         IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
630                        __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
631 }
632
633 /*
634  * ia64_mca_cmc_vector_disable
635  *
636  *  Mask the corrected machine check vector register in the processor.
637  *  This function is invoked on a per-processor basis.
638  *
639  * Inputs
640  *      dummy(unused)
641  *
642  * Outputs
643  *      None
644  */
645 static void
646 ia64_mca_cmc_vector_disable (void *dummy)
647 {
648         cmcv_reg_t      cmcv;
649
650         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
651
652         cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
653         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
654
655         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
656                        __func__, smp_processor_id(), cmcv.cmcv_vector);
657 }
658
659 /*
660  * ia64_mca_cmc_vector_enable
661  *
662  *  Unmask the corrected machine check vector register in the processor.
663  *  This function is invoked on a per-processor basis.
664  *
665  * Inputs
666  *      dummy(unused)
667  *
668  * Outputs
669  *      None
670  */
671 static void
672 ia64_mca_cmc_vector_enable (void *dummy)
673 {
674         cmcv_reg_t      cmcv;
675
676         cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
677
678         cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
679         ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
680
681         IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
682                        __func__, smp_processor_id(), cmcv.cmcv_vector);
683 }
684
685 /*
686  * ia64_mca_cmc_vector_disable_keventd
687  *
688  * Called via keventd (smp_call_function() is not safe in interrupt context) to
689  * disable the cmc interrupt vector.
690  */
691 static void
692 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
693 {
694         on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
695 }
696
697 /*
698  * ia64_mca_cmc_vector_enable_keventd
699  *
700  * Called via keventd (smp_call_function() is not safe in interrupt context) to
701  * enable the cmc interrupt vector.
702  */
703 static void
704 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
705 {
706         on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
707 }
708
709 /*
710  * ia64_mca_wakeup
711  *
712  *      Send an inter-cpu interrupt to wake-up a particular cpu.
713  *
714  *  Inputs  :   cpuid
715  *  Outputs :   None
716  */
717 static void
718 ia64_mca_wakeup(int cpu)
719 {
720         platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
721 }
722
723 /*
724  * ia64_mca_wakeup_all
725  *
726  *      Wakeup all the slave cpus which have rendez'ed previously.
727  *
728  *  Inputs  :   None
729  *  Outputs :   None
730  */
731 static void
732 ia64_mca_wakeup_all(void)
733 {
734         int cpu;
735
736         /* Clear the Rendez checkin flag for all cpus */
737         for_each_online_cpu(cpu) {
738                 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
739                         ia64_mca_wakeup(cpu);
740         }
741
742 }
743
744 /*
745  * ia64_mca_rendez_interrupt_handler
746  *
747  *      This is handler used to put slave processors into spinloop
748  *      while the monarch processor does the mca handling and later
749  *      wake each slave up once the monarch is done.  The state
750  *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
751  *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
752  *      the cpu has come out of OS rendezvous.
753  *
754  *  Inputs  :   None
755  *  Outputs :   None
756  */
757 static irqreturn_t
758 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
759 {
760         unsigned long flags;
761         int cpu = smp_processor_id();
762         struct ia64_mca_notify_die nd =
763                 { .sos = NULL, .monarch_cpu = &monarch_cpu };
764
765         /* Mask all interrupts */
766         local_irq_save(flags);
767         if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
768                        (long)&nd, 0, 0) == NOTIFY_STOP)
769                 ia64_mca_spin(__func__);
770
771         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
772         /* Register with the SAL monarch that the slave has
773          * reached SAL
774          */
775         ia64_sal_mc_rendez();
776
777         if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
778                        (long)&nd, 0, 0) == NOTIFY_STOP)
779                 ia64_mca_spin(__func__);
780
781         /* Wait for the monarch cpu to exit. */
782         while (monarch_cpu != -1)
783                cpu_relax();     /* spin until monarch leaves */
784
785         if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
786                        (long)&nd, 0, 0) == NOTIFY_STOP)
787                 ia64_mca_spin(__func__);
788
789         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
790         /* Enable all interrupts */
791         local_irq_restore(flags);
792         return IRQ_HANDLED;
793 }
794
795 /*
796  * ia64_mca_wakeup_int_handler
797  *
798  *      The interrupt handler for processing the inter-cpu interrupt to the
799  *      slave cpu which was spinning in the rendez loop.
800  *      Since this spinning is done by turning off the interrupts and
801  *      polling on the wakeup-interrupt bit in the IRR, there is
802  *      nothing useful to be done in the handler.
803  *
804  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
805  *      arg             (Interrupt handler specific argument)
806  *  Outputs :   None
807  *
808  */
809 static irqreturn_t
810 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
811 {
812         return IRQ_HANDLED;
813 }
814
815 /* Function pointer for extra MCA recovery */
816 int (*ia64_mca_ucmc_extension)
817         (void*,struct ia64_sal_os_state*)
818         = NULL;
819
820 int
821 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
822 {
823         if (ia64_mca_ucmc_extension)
824                 return 1;
825
826         ia64_mca_ucmc_extension = fn;
827         return 0;
828 }
829
830 void
831 ia64_unreg_MCA_extension(void)
832 {
833         if (ia64_mca_ucmc_extension)
834                 ia64_mca_ucmc_extension = NULL;
835 }
836
837 EXPORT_SYMBOL(ia64_reg_MCA_extension);
838 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
839
840
841 static inline void
842 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
843 {
844         u64 fslot, tslot, nat;
845         *tr = *fr;
846         fslot = ((unsigned long)fr >> 3) & 63;
847         tslot = ((unsigned long)tr >> 3) & 63;
848         *tnat &= ~(1UL << tslot);
849         nat = (fnat >> fslot) & 1;
850         *tnat |= (nat << tslot);
851 }
852
853 /* Change the comm field on the MCA/INT task to include the pid that
854  * was interrupted, it makes for easier debugging.  If that pid was 0
855  * (swapper or nested MCA/INIT) then use the start of the previous comm
856  * field suffixed with its cpu.
857  */
858
859 static void
860 ia64_mca_modify_comm(const struct task_struct *previous_current)
861 {
862         char *p, comm[sizeof(current->comm)];
863         if (previous_current->pid)
864                 snprintf(comm, sizeof(comm), "%s %d",
865                         current->comm, previous_current->pid);
866         else {
867                 int l;
868                 if ((p = strchr(previous_current->comm, ' ')))
869                         l = p - previous_current->comm;
870                 else
871                         l = strlen(previous_current->comm);
872                 snprintf(comm, sizeof(comm), "%s %*s %d",
873                         current->comm, l, previous_current->comm,
874                         task_thread_info(previous_current)->cpu);
875         }
876         memcpy(current->comm, comm, sizeof(current->comm));
877 }
878
879 /* On entry to this routine, we are running on the per cpu stack, see
880  * mca_asm.h.  The original stack has not been touched by this event.  Some of
881  * the original stack's registers will be in the RBS on this stack.  This stack
882  * also contains a partial pt_regs and switch_stack, the rest of the data is in
883  * PAL minstate.
884  *
885  * The first thing to do is modify the original stack to look like a blocked
886  * task so we can run backtrace on the original task.  Also mark the per cpu
887  * stack as current to ensure that we use the correct task state, it also means
888  * that we can do backtrace on the MCA/INIT handler code itself.
889  */
890
891 static struct task_struct *
892 ia64_mca_modify_original_stack(struct pt_regs *regs,
893                 const struct switch_stack *sw,
894                 struct ia64_sal_os_state *sos,
895                 const char *type)
896 {
897         char *p;
898         ia64_va va;
899         extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
900         const pal_min_state_area_t *ms = sos->pal_min_state;
901         struct task_struct *previous_current;
902         struct pt_regs *old_regs;
903         struct switch_stack *old_sw;
904         unsigned size = sizeof(struct pt_regs) +
905                         sizeof(struct switch_stack) + 16;
906         u64 *old_bspstore, *old_bsp;
907         u64 *new_bspstore, *new_bsp;
908         u64 old_unat, old_rnat, new_rnat, nat;
909         u64 slots, loadrs = regs->loadrs;
910         u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
911         u64 ar_bspstore = regs->ar_bspstore;
912         u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
913         const u64 *bank;
914         const char *msg;
915         int cpu = smp_processor_id();
916
917         previous_current = curr_task(cpu);
918         set_curr_task(cpu, current);
919         if ((p = strchr(current->comm, ' ')))
920                 *p = '\0';
921
922         /* Best effort attempt to cope with MCA/INIT delivered while in
923          * physical mode.
924          */
925         regs->cr_ipsr = ms->pmsa_ipsr;
926         if (ia64_psr(regs)->dt == 0) {
927                 va.l = r12;
928                 if (va.f.reg == 0) {
929                         va.f.reg = 7;
930                         r12 = va.l;
931                 }
932                 va.l = r13;
933                 if (va.f.reg == 0) {
934                         va.f.reg = 7;
935                         r13 = va.l;
936                 }
937         }
938         if (ia64_psr(regs)->rt == 0) {
939                 va.l = ar_bspstore;
940                 if (va.f.reg == 0) {
941                         va.f.reg = 7;
942                         ar_bspstore = va.l;
943                 }
944                 va.l = ar_bsp;
945                 if (va.f.reg == 0) {
946                         va.f.reg = 7;
947                         ar_bsp = va.l;
948                 }
949         }
950
951         /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
952          * have been copied to the old stack, the old stack may fail the
953          * validation tests below.  So ia64_old_stack() must restore the dirty
954          * registers from the new stack.  The old and new bspstore probably
955          * have different alignments, so loadrs calculated on the old bsp
956          * cannot be used to restore from the new bsp.  Calculate a suitable
957          * loadrs for the new stack and save it in the new pt_regs, where
958          * ia64_old_stack() can get it.
959          */
960         old_bspstore = (u64 *)ar_bspstore;
961         old_bsp = (u64 *)ar_bsp;
962         slots = ia64_rse_num_regs(old_bspstore, old_bsp);
963         new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
964         new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
965         regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
966
967         /* Verify the previous stack state before we change it */
968         if (user_mode(regs)) {
969                 msg = "occurred in user space";
970                 /* previous_current is guaranteed to be valid when the task was
971                  * in user space, so ...
972                  */
973                 ia64_mca_modify_comm(previous_current);
974                 goto no_mod;
975         }
976
977         if (r13 != sos->prev_IA64_KR_CURRENT) {
978                 msg = "inconsistent previous current and r13";
979                 goto no_mod;
980         }
981
982         if (!mca_recover_range(ms->pmsa_iip)) {
983                 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
984                         msg = "inconsistent r12 and r13";
985                         goto no_mod;
986                 }
987                 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
988                         msg = "inconsistent ar.bspstore and r13";
989                         goto no_mod;
990                 }
991                 va.p = old_bspstore;
992                 if (va.f.reg < 5) {
993                         msg = "old_bspstore is in the wrong region";
994                         goto no_mod;
995                 }
996                 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
997                         msg = "inconsistent ar.bsp and r13";
998                         goto no_mod;
999                 }
1000                 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1001                 if (ar_bspstore + size > r12) {
1002                         msg = "no room for blocked state";
1003                         goto no_mod;
1004                 }
1005         }
1006
1007         ia64_mca_modify_comm(previous_current);
1008
1009         /* Make the original task look blocked.  First stack a struct pt_regs,
1010          * describing the state at the time of interrupt.  mca_asm.S built a
1011          * partial pt_regs, copy it and fill in the blanks using minstate.
1012          */
1013         p = (char *)r12 - sizeof(*regs);
1014         old_regs = (struct pt_regs *)p;
1015         memcpy(old_regs, regs, sizeof(*regs));
1016         /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1017          * pmsa_{xip,xpsr,xfs}
1018          */
1019         if (ia64_psr(regs)->ic) {
1020                 old_regs->cr_iip = ms->pmsa_iip;
1021                 old_regs->cr_ipsr = ms->pmsa_ipsr;
1022                 old_regs->cr_ifs = ms->pmsa_ifs;
1023         } else {
1024                 old_regs->cr_iip = ms->pmsa_xip;
1025                 old_regs->cr_ipsr = ms->pmsa_xpsr;
1026                 old_regs->cr_ifs = ms->pmsa_xfs;
1027         }
1028         old_regs->pr = ms->pmsa_pr;
1029         old_regs->b0 = ms->pmsa_br0;
1030         old_regs->loadrs = loadrs;
1031         old_regs->ar_rsc = ms->pmsa_rsc;
1032         old_unat = old_regs->ar_unat;
1033         copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1034         copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1035         copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1036         copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1037         copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1038         copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1039         copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1040         copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1041         copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1042         copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1043         copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1044         if (ia64_psr(old_regs)->bn)
1045                 bank = ms->pmsa_bank1_gr;
1046         else
1047                 bank = ms->pmsa_bank0_gr;
1048         copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1049         copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1050         copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1051         copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1052         copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1053         copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1054         copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1055         copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1056         copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1057         copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1058         copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1059         copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1060         copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1061         copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1062         copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1063         copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1064
1065         /* Next stack a struct switch_stack.  mca_asm.S built a partial
1066          * switch_stack, copy it and fill in the blanks using pt_regs and
1067          * minstate.
1068          *
1069          * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1070          * ar.pfs is set to 0.
1071          *
1072          * unwind.c::unw_unwind() does special processing for interrupt frames.
1073          * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1074          * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1075          * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1076          * switch_stack on the original stack so it will unwind correctly when
1077          * unwind.c reads pt_regs.
1078          *
1079          * thread.ksp is updated to point to the synthesized switch_stack.
1080          */
1081         p -= sizeof(struct switch_stack);
1082         old_sw = (struct switch_stack *)p;
1083         memcpy(old_sw, sw, sizeof(*sw));
1084         old_sw->caller_unat = old_unat;
1085         old_sw->ar_fpsr = old_regs->ar_fpsr;
1086         copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1087         copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1088         copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1089         copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1090         old_sw->b0 = (u64)ia64_leave_kernel;
1091         old_sw->b1 = ms->pmsa_br1;
1092         old_sw->ar_pfs = 0;
1093         old_sw->ar_unat = old_unat;
1094         old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1095         previous_current->thread.ksp = (u64)p - 16;
1096
1097         /* Finally copy the original stack's registers back to its RBS.
1098          * Registers from ar.bspstore through ar.bsp at the time of the event
1099          * are in the current RBS, copy them back to the original stack.  The
1100          * copy must be done register by register because the original bspstore
1101          * and the current one have different alignments, so the saved RNAT
1102          * data occurs at different places.
1103          *
1104          * mca_asm does cover, so the old_bsp already includes all registers at
1105          * the time of MCA/INIT.  It also does flushrs, so all registers before
1106          * this function have been written to backing store on the MCA/INIT
1107          * stack.
1108          */
1109         new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1110         old_rnat = regs->ar_rnat;
1111         while (slots--) {
1112                 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1113                         new_rnat = ia64_get_rnat(new_bspstore++);
1114                 }
1115                 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1116                         *old_bspstore++ = old_rnat;
1117                         old_rnat = 0;
1118                 }
1119                 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1120                 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1121                 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1122                 *old_bspstore++ = *new_bspstore++;
1123         }
1124         old_sw->ar_bspstore = (unsigned long)old_bspstore;
1125         old_sw->ar_rnat = old_rnat;
1126
1127         sos->prev_task = previous_current;
1128         return previous_current;
1129
1130 no_mod:
1131         printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1132                         smp_processor_id(), type, msg);
1133         return previous_current;
1134 }
1135
1136 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1137  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1138  * not entered rendezvous yet then wait a bit.  The assumption is that any
1139  * slave that has not rendezvoused after a reasonable time is never going to do
1140  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1141  * interrupt, as well as cpus that receive the INIT slave event.
1142  */
1143
1144 static void
1145 ia64_wait_for_slaves(int monarch, const char *type)
1146 {
1147         int c, i , wait;
1148
1149         /*
1150          * wait 5 seconds total for slaves (arbitrary)
1151          */
1152         for (i = 0; i < 5000; i++) {
1153                 wait = 0;
1154                 for_each_online_cpu(c) {
1155                         if (c == monarch)
1156                                 continue;
1157                         if (ia64_mc_info.imi_rendez_checkin[c]
1158                                         == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1159                                 udelay(1000);           /* short wait */
1160                                 wait = 1;
1161                                 break;
1162                         }
1163                 }
1164                 if (!wait)
1165                         goto all_in;
1166         }
1167
1168         /*
1169          * Maybe slave(s) dead. Print buffered messages immediately.
1170          */
1171         ia64_mlogbuf_finish(0);
1172         mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1173         for_each_online_cpu(c) {
1174                 if (c == monarch)
1175                         continue;
1176                 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1177                         mprintk(" %d", c);
1178         }
1179         mprintk("\n");
1180         return;
1181
1182 all_in:
1183         mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1184         return;
1185 }
1186
1187 /*  mca_insert_tr
1188  *
1189  *  Switch rid when TR reload and needed!
1190  *  iord: 1: itr, 2: itr;
1191  *
1192 */
1193 static void mca_insert_tr(u64 iord)
1194 {
1195
1196         int i;
1197         u64 old_rr;
1198         struct ia64_tr_entry *p;
1199         unsigned long psr;
1200         int cpu = smp_processor_id();
1201
1202         psr = ia64_clear_ic();
1203         for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1204                 p = &__per_cpu_idtrs[cpu][iord-1][i];
1205                 if (p->pte & 0x1) {
1206                         old_rr = ia64_get_rr(p->ifa);
1207                         if (old_rr != p->rr) {
1208                                 ia64_set_rr(p->ifa, p->rr);
1209                                 ia64_srlz_d();
1210                         }
1211                         ia64_ptr(iord, p->ifa, p->itir >> 2);
1212                         ia64_srlz_i();
1213                         if (iord & 0x1) {
1214                                 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1215                                 ia64_srlz_i();
1216                         }
1217                         if (iord & 0x2) {
1218                                 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1219                                 ia64_srlz_i();
1220                         }
1221                         if (old_rr != p->rr) {
1222                                 ia64_set_rr(p->ifa, old_rr);
1223                                 ia64_srlz_d();
1224                         }
1225                 }
1226         }
1227         ia64_set_psr(psr);
1228 }
1229
1230 /*
1231  * ia64_mca_handler
1232  *
1233  *      This is uncorrectable machine check handler called from OS_MCA
1234  *      dispatch code which is in turn called from SAL_CHECK().
1235  *      This is the place where the core of OS MCA handling is done.
1236  *      Right now the logs are extracted and displayed in a well-defined
1237  *      format. This handler code is supposed to be run only on the
1238  *      monarch processor. Once the monarch is done with MCA handling
1239  *      further MCA logging is enabled by clearing logs.
1240  *      Monarch also has the duty of sending wakeup-IPIs to pull the
1241  *      slave processors out of rendezvous spinloop.
1242  *
1243  *      If multiple processors call into OS_MCA, the first will become
1244  *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1245  *      bitmask.  After the first monarch has processed its MCA, it
1246  *      will wake up the next cpu in the mca_cpu bitmask and then go
1247  *      into the rendezvous loop.  When all processors have serviced
1248  *      their MCA, the last monarch frees up the rest of the processors.
1249  */
1250 void
1251 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1252                  struct ia64_sal_os_state *sos)
1253 {
1254         int recover, cpu = smp_processor_id();
1255         struct task_struct *previous_current;
1256         struct ia64_mca_notify_die nd =
1257                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1258         static atomic_t mca_count;
1259         static cpumask_t mca_cpu;
1260
1261         if (atomic_add_return(1, &mca_count) == 1) {
1262                 monarch_cpu = cpu;
1263                 sos->monarch = 1;
1264         } else {
1265                 cpu_set(cpu, mca_cpu);
1266                 sos->monarch = 0;
1267         }
1268         mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1269                 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1270
1271         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1272
1273         if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1274                         == NOTIFY_STOP)
1275                 ia64_mca_spin(__func__);
1276
1277         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1278         if (sos->monarch) {
1279                 ia64_wait_for_slaves(cpu, "MCA");
1280
1281                 /* Wakeup all the processors which are spinning in the
1282                  * rendezvous loop.  They will leave SAL, then spin in the OS
1283                  * with interrupts disabled until this monarch cpu leaves the
1284                  * MCA handler.  That gets control back to the OS so we can
1285                  * backtrace the other cpus, backtrace when spinning in SAL
1286                  * does not work.
1287                  */
1288                 ia64_mca_wakeup_all();
1289                 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1290                                 == NOTIFY_STOP)
1291                         ia64_mca_spin(__func__);
1292         } else {
1293                 while (cpu_isset(cpu, mca_cpu))
1294                         cpu_relax();    /* spin until monarch wakes us */
1295         }
1296
1297         /* Get the MCA error record and log it */
1298         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1299
1300         /* MCA error recovery */
1301         recover = (ia64_mca_ucmc_extension
1302                 && ia64_mca_ucmc_extension(
1303                         IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1304                         sos));
1305
1306         if (recover) {
1307                 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1308                 rh->severity = sal_log_severity_corrected;
1309                 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1310                 sos->os_status = IA64_MCA_CORRECTED;
1311         } else {
1312                 /* Dump buffered message to console */
1313                 ia64_mlogbuf_finish(1);
1314 #ifdef CONFIG_KEXEC
1315                 atomic_set(&kdump_in_progress, 1);
1316                 monarch_cpu = -1;
1317 #endif
1318         }
1319         if (__get_cpu_var(ia64_mca_tr_reload)) {
1320                 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1321                 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1322         }
1323         if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1324                         == NOTIFY_STOP)
1325                 ia64_mca_spin(__func__);
1326
1327
1328         if (atomic_dec_return(&mca_count) > 0) {
1329                 int i;
1330
1331                 /* wake up the next monarch cpu,
1332                  * and put this cpu in the rendez loop.
1333                  */
1334                 for_each_online_cpu(i) {
1335                         if (cpu_isset(i, mca_cpu)) {
1336                                 monarch_cpu = i;
1337                                 cpu_clear(i, mca_cpu);  /* wake next cpu */
1338                                 while (monarch_cpu != -1)
1339                                         cpu_relax();    /* spin until last cpu leaves */
1340                                 set_curr_task(cpu, previous_current);
1341                                 ia64_mc_info.imi_rendez_checkin[cpu]
1342                                                 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1343                                 return;
1344                         }
1345                 }
1346         }
1347         set_curr_task(cpu, previous_current);
1348         ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1349         monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1350 }
1351
1352 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1353 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1354
1355 /*
1356  * ia64_mca_cmc_int_handler
1357  *
1358  *  This is corrected machine check interrupt handler.
1359  *      Right now the logs are extracted and displayed in a well-defined
1360  *      format.
1361  *
1362  * Inputs
1363  *      interrupt number
1364  *      client data arg ptr
1365  *
1366  * Outputs
1367  *      None
1368  */
1369 static irqreturn_t
1370 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1371 {
1372         static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1373         static int              index;
1374         static DEFINE_SPINLOCK(cmc_history_lock);
1375
1376         IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1377                        __func__, cmc_irq, smp_processor_id());
1378
1379         /* SAL spec states this should run w/ interrupts enabled */
1380         local_irq_enable();
1381
1382         spin_lock(&cmc_history_lock);
1383         if (!cmc_polling_enabled) {
1384                 int i, count = 1; /* we know 1 happened now */
1385                 unsigned long now = jiffies;
1386
1387                 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1388                         if (now - cmc_history[i] <= HZ)
1389                                 count++;
1390                 }
1391
1392                 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1393                 if (count >= CMC_HISTORY_LENGTH) {
1394
1395                         cmc_polling_enabled = 1;
1396                         spin_unlock(&cmc_history_lock);
1397                         /* If we're being hit with CMC interrupts, we won't
1398                          * ever execute the schedule_work() below.  Need to
1399                          * disable CMC interrupts on this processor now.
1400                          */
1401                         ia64_mca_cmc_vector_disable(NULL);
1402                         schedule_work(&cmc_disable_work);
1403
1404                         /*
1405                          * Corrected errors will still be corrected, but
1406                          * make sure there's a log somewhere that indicates
1407                          * something is generating more than we can handle.
1408                          */
1409                         printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1410
1411                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1412
1413                         /* lock already released, get out now */
1414                         goto out;
1415                 } else {
1416                         cmc_history[index++] = now;
1417                         if (index == CMC_HISTORY_LENGTH)
1418                                 index = 0;
1419                 }
1420         }
1421         spin_unlock(&cmc_history_lock);
1422 out:
1423         /* Get the CMC error record and log it */
1424         ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1425
1426         return IRQ_HANDLED;
1427 }
1428
1429 /*
1430  *  ia64_mca_cmc_int_caller
1431  *
1432  *      Triggered by sw interrupt from CMC polling routine.  Calls
1433  *      real interrupt handler and either triggers a sw interrupt
1434  *      on the next cpu or does cleanup at the end.
1435  *
1436  * Inputs
1437  *      interrupt number
1438  *      client data arg ptr
1439  * Outputs
1440  *      handled
1441  */
1442 static irqreturn_t
1443 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1444 {
1445         static int start_count = -1;
1446         unsigned int cpuid;
1447
1448         cpuid = smp_processor_id();
1449
1450         /* If first cpu, update count */
1451         if (start_count == -1)
1452                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1453
1454         ia64_mca_cmc_int_handler(cmc_irq, arg);
1455
1456         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1457
1458         if (cpuid < NR_CPUS) {
1459                 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1460         } else {
1461                 /* If no log record, switch out of polling mode */
1462                 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1463
1464                         printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1465                         schedule_work(&cmc_enable_work);
1466                         cmc_polling_enabled = 0;
1467
1468                 } else {
1469
1470                         mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1471                 }
1472
1473                 start_count = -1;
1474         }
1475
1476         return IRQ_HANDLED;
1477 }
1478
1479 /*
1480  *  ia64_mca_cmc_poll
1481  *
1482  *      Poll for Corrected Machine Checks (CMCs)
1483  *
1484  * Inputs   :   dummy(unused)
1485  * Outputs  :   None
1486  *
1487  */
1488 static void
1489 ia64_mca_cmc_poll (unsigned long dummy)
1490 {
1491         /* Trigger a CMC interrupt cascade  */
1492         platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1493 }
1494
1495 /*
1496  *  ia64_mca_cpe_int_caller
1497  *
1498  *      Triggered by sw interrupt from CPE polling routine.  Calls
1499  *      real interrupt handler and either triggers a sw interrupt
1500  *      on the next cpu or does cleanup at the end.
1501  *
1502  * Inputs
1503  *      interrupt number
1504  *      client data arg ptr
1505  * Outputs
1506  *      handled
1507  */
1508 #ifdef CONFIG_ACPI
1509
1510 static irqreturn_t
1511 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1512 {
1513         static int start_count = -1;
1514         static int poll_time = MIN_CPE_POLL_INTERVAL;
1515         unsigned int cpuid;
1516
1517         cpuid = smp_processor_id();
1518
1519         /* If first cpu, update count */
1520         if (start_count == -1)
1521                 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1522
1523         ia64_mca_cpe_int_handler(cpe_irq, arg);
1524
1525         for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1526
1527         if (cpuid < NR_CPUS) {
1528                 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1529         } else {
1530                 /*
1531                  * If a log was recorded, increase our polling frequency,
1532                  * otherwise, backoff or return to interrupt mode.
1533                  */
1534                 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1535                         poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1536                 } else if (cpe_vector < 0) {
1537                         poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1538                 } else {
1539                         poll_time = MIN_CPE_POLL_INTERVAL;
1540
1541                         printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1542                         enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1543                         cpe_poll_enabled = 0;
1544                 }
1545
1546                 if (cpe_poll_enabled)
1547                         mod_timer(&cpe_poll_timer, jiffies + poll_time);
1548                 start_count = -1;
1549         }
1550
1551         return IRQ_HANDLED;
1552 }
1553
1554 /*
1555  *  ia64_mca_cpe_poll
1556  *
1557  *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1558  *      on first cpu, from there it will trickle through all the cpus.
1559  *
1560  * Inputs   :   dummy(unused)
1561  * Outputs  :   None
1562  *
1563  */
1564 static void
1565 ia64_mca_cpe_poll (unsigned long dummy)
1566 {
1567         /* Trigger a CPE interrupt cascade  */
1568         platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1569 }
1570
1571 #endif /* CONFIG_ACPI */
1572
1573 static int
1574 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1575 {
1576         int c;
1577         struct task_struct *g, *t;
1578         if (val != DIE_INIT_MONARCH_PROCESS)
1579                 return NOTIFY_DONE;
1580 #ifdef CONFIG_KEXEC
1581         if (atomic_read(&kdump_in_progress))
1582                 return NOTIFY_DONE;
1583 #endif
1584
1585         /*
1586          * FIXME: mlogbuf will brim over with INIT stack dumps.
1587          * To enable show_stack from INIT, we use oops_in_progress which should
1588          * be used in real oops. This would cause something wrong after INIT.
1589          */
1590         BREAK_LOGLEVEL(console_loglevel);
1591         ia64_mlogbuf_dump_from_init();
1592
1593         printk(KERN_ERR "Processes interrupted by INIT -");
1594         for_each_online_cpu(c) {
1595                 struct ia64_sal_os_state *s;
1596                 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1597                 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1598                 g = s->prev_task;
1599                 if (g) {
1600                         if (g->pid)
1601                                 printk(" %d", g->pid);
1602                         else
1603                                 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1604                 }
1605         }
1606         printk("\n\n");
1607         if (read_trylock(&tasklist_lock)) {
1608                 do_each_thread (g, t) {
1609                         printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1610                         show_stack(t, NULL);
1611                 } while_each_thread (g, t);
1612                 read_unlock(&tasklist_lock);
1613         }
1614         /* FIXME: This will not restore zapped printk locks. */
1615         RESTORE_LOGLEVEL(console_loglevel);
1616         return NOTIFY_DONE;
1617 }
1618
1619 /*
1620  * C portion of the OS INIT handler
1621  *
1622  * Called from ia64_os_init_dispatch
1623  *
1624  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1625  * this event.  This code is used for both monarch and slave INIT events, see
1626  * sos->monarch.
1627  *
1628  * All INIT events switch to the INIT stack and change the previous process to
1629  * blocked status.  If one of the INIT events is the monarch then we are
1630  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1631  * the processes.  The slave INIT events all spin until the monarch cpu
1632  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1633  * process is the monarch.
1634  */
1635
1636 void
1637 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1638                   struct ia64_sal_os_state *sos)
1639 {
1640         static atomic_t slaves;
1641         static atomic_t monarchs;
1642         struct task_struct *previous_current;
1643         int cpu = smp_processor_id();
1644         struct ia64_mca_notify_die nd =
1645                 { .sos = sos, .monarch_cpu = &monarch_cpu };
1646
1647         (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1648
1649         mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1650                 sos->proc_state_param, cpu, sos->monarch);
1651         salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1652
1653         previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1654         sos->os_status = IA64_INIT_RESUME;
1655
1656         /* FIXME: Workaround for broken proms that drive all INIT events as
1657          * slaves.  The last slave that enters is promoted to be a monarch.
1658          * Remove this code in September 2006, that gives platforms a year to
1659          * fix their proms and get their customers updated.
1660          */
1661         if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1662                 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1663                         __func__, cpu);
1664                 atomic_dec(&slaves);
1665                 sos->monarch = 1;
1666         }
1667
1668         /* FIXME: Workaround for broken proms that drive all INIT events as
1669          * monarchs.  Second and subsequent monarchs are demoted to slaves.
1670          * Remove this code in September 2006, that gives platforms a year to
1671          * fix their proms and get their customers updated.
1672          */
1673         if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1674                 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1675                                __func__, cpu);
1676                 atomic_dec(&monarchs);
1677                 sos->monarch = 0;
1678         }
1679
1680         if (!sos->monarch) {
1681                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1682                 while (monarch_cpu == -1)
1683                        cpu_relax();     /* spin until monarch enters */
1684                 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1685                                 == NOTIFY_STOP)
1686                         ia64_mca_spin(__func__);
1687                 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1688                                 == NOTIFY_STOP)
1689                         ia64_mca_spin(__func__);
1690                 while (monarch_cpu != -1)
1691                        cpu_relax();     /* spin until monarch leaves */
1692                 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1693                                 == NOTIFY_STOP)
1694                         ia64_mca_spin(__func__);
1695                 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1696                 set_curr_task(cpu, previous_current);
1697                 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1698                 atomic_dec(&slaves);
1699                 return;
1700         }
1701
1702         monarch_cpu = cpu;
1703         if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1704                         == NOTIFY_STOP)
1705                 ia64_mca_spin(__func__);
1706
1707         /*
1708          * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1709          * generated via the BMC's command-line interface, but since the console is on the
1710          * same serial line, the user will need some time to switch out of the BMC before
1711          * the dump begins.
1712          */
1713         mprintk("Delaying for 5 seconds...\n");
1714         udelay(5*1000000);
1715         ia64_wait_for_slaves(cpu, "INIT");
1716         /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1717          * to default_monarch_init_process() above and just print all the
1718          * tasks.
1719          */
1720         if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1721                         == NOTIFY_STOP)
1722                 ia64_mca_spin(__func__);
1723         if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1724                         == NOTIFY_STOP)
1725                 ia64_mca_spin(__func__);
1726         mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1727         atomic_dec(&monarchs);
1728         set_curr_task(cpu, previous_current);
1729         monarch_cpu = -1;
1730         return;
1731 }
1732
1733 static int __init
1734 ia64_mca_disable_cpe_polling(char *str)
1735 {
1736         cpe_poll_enabled = 0;
1737         return 1;
1738 }
1739
1740 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1741
1742 static struct irqaction cmci_irqaction = {
1743         .handler =      ia64_mca_cmc_int_handler,
1744         .flags =        IRQF_DISABLED,
1745         .name =         "cmc_hndlr"
1746 };
1747
1748 static struct irqaction cmcp_irqaction = {
1749         .handler =      ia64_mca_cmc_int_caller,
1750         .flags =        IRQF_DISABLED,
1751         .name =         "cmc_poll"
1752 };
1753
1754 static struct irqaction mca_rdzv_irqaction = {
1755         .handler =      ia64_mca_rendez_int_handler,
1756         .flags =        IRQF_DISABLED,
1757         .name =         "mca_rdzv"
1758 };
1759
1760 static struct irqaction mca_wkup_irqaction = {
1761         .handler =      ia64_mca_wakeup_int_handler,
1762         .flags =        IRQF_DISABLED,
1763         .name =         "mca_wkup"
1764 };
1765
1766 #ifdef CONFIG_ACPI
1767 static struct irqaction mca_cpe_irqaction = {
1768         .handler =      ia64_mca_cpe_int_handler,
1769         .flags =        IRQF_DISABLED,
1770         .name =         "cpe_hndlr"
1771 };
1772
1773 static struct irqaction mca_cpep_irqaction = {
1774         .handler =      ia64_mca_cpe_int_caller,
1775         .flags =        IRQF_DISABLED,
1776         .name =         "cpe_poll"
1777 };
1778 #endif /* CONFIG_ACPI */
1779
1780 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1781  * these stacks can never sleep, they cannot return from the kernel to user
1782  * space, they do not appear in a normal ps listing.  So there is no need to
1783  * format most of the fields.
1784  */
1785
1786 static void __cpuinit
1787 format_mca_init_stack(void *mca_data, unsigned long offset,
1788                 const char *type, int cpu)
1789 {
1790         struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1791         struct thread_info *ti;
1792         memset(p, 0, KERNEL_STACK_SIZE);
1793         ti = task_thread_info(p);
1794         ti->flags = _TIF_MCA_INIT;
1795         ti->preempt_count = 1;
1796         ti->task = p;
1797         ti->cpu = cpu;
1798         p->stack = ti;
1799         p->state = TASK_UNINTERRUPTIBLE;
1800         cpu_set(cpu, p->cpus_allowed);
1801         INIT_LIST_HEAD(&p->tasks);
1802         p->parent = p->real_parent = p->group_leader = p;
1803         INIT_LIST_HEAD(&p->children);
1804         INIT_LIST_HEAD(&p->sibling);
1805         strncpy(p->comm, type, sizeof(p->comm)-1);
1806 }
1807
1808 /* Caller prevents this from being called after init */
1809 static void * __init_refok mca_bootmem(void)
1810 {
1811         return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1812                             KERNEL_STACK_SIZE, 0);
1813 }
1814
1815 /* Do per-CPU MCA-related initialization.  */
1816 void __cpuinit
1817 ia64_mca_cpu_init(void *cpu_data)
1818 {
1819         void *pal_vaddr;
1820         void *data;
1821         long sz = sizeof(struct ia64_mca_cpu);
1822         int cpu = smp_processor_id();
1823         static int first_time = 1;
1824
1825         /*
1826          * Structure will already be allocated if cpu has been online,
1827          * then offlined.
1828          */
1829         if (__per_cpu_mca[cpu]) {
1830                 data = __va(__per_cpu_mca[cpu]);
1831         } else {
1832                 if (first_time) {
1833                         data = mca_bootmem();
1834                         first_time = 0;
1835                 } else
1836                         data = page_address(alloc_pages_node(numa_node_id(),
1837                                         GFP_KERNEL, get_order(sz)));
1838                 if (!data)
1839                         panic("Could not allocate MCA memory for cpu %d\n",
1840                                         cpu);
1841         }
1842         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1843                 "MCA", cpu);
1844         format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1845                 "INIT", cpu);
1846         __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1847
1848         /*
1849          * Stash away a copy of the PTE needed to map the per-CPU page.
1850          * We may need it during MCA recovery.
1851          */
1852         __get_cpu_var(ia64_mca_per_cpu_pte) =
1853                 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1854
1855         /*
1856          * Also, stash away a copy of the PAL address and the PTE
1857          * needed to map it.
1858          */
1859         pal_vaddr = efi_get_pal_addr();
1860         if (!pal_vaddr)
1861                 return;
1862         __get_cpu_var(ia64_mca_pal_base) =
1863                 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1864         __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1865                                                               PAGE_KERNEL));
1866 }
1867
1868 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1869 {
1870         unsigned long flags;
1871
1872         local_irq_save(flags);
1873         if (!cmc_polling_enabled)
1874                 ia64_mca_cmc_vector_enable(NULL);
1875         local_irq_restore(flags);
1876 }
1877
1878 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1879                                       unsigned long action,
1880                                       void *hcpu)
1881 {
1882         int hotcpu = (unsigned long) hcpu;
1883
1884         switch (action) {
1885         case CPU_ONLINE:
1886         case CPU_ONLINE_FROZEN:
1887                 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1888                                          NULL, 1, 0);
1889                 break;
1890         }
1891         return NOTIFY_OK;
1892 }
1893
1894 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1895         .notifier_call = mca_cpu_callback
1896 };
1897
1898 /*
1899  * ia64_mca_init
1900  *
1901  *  Do all the system level mca specific initialization.
1902  *
1903  *      1. Register spinloop and wakeup request interrupt vectors
1904  *
1905  *      2. Register OS_MCA handler entry point
1906  *
1907  *      3. Register OS_INIT handler entry point
1908  *
1909  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1910  *
1911  *  Note that this initialization is done very early before some kernel
1912  *  services are available.
1913  *
1914  *  Inputs  :   None
1915  *
1916  *  Outputs :   None
1917  */
1918 void __init
1919 ia64_mca_init(void)
1920 {
1921         ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1922         ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1923         ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1924         int i;
1925         s64 rc;
1926         struct ia64_sal_retval isrv;
1927         u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;  /* platform specific */
1928         static struct notifier_block default_init_monarch_nb = {
1929                 .notifier_call = default_monarch_init_process,
1930                 .priority = 0/* we need to notified last */
1931         };
1932
1933         IA64_MCA_DEBUG("%s: begin\n", __func__);
1934
1935         /* Clear the Rendez checkin flag for all cpus */
1936         for(i = 0 ; i < NR_CPUS; i++)
1937                 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1938
1939         /*
1940          * Register the rendezvous spinloop and wakeup mechanism with SAL
1941          */
1942
1943         /* Register the rendezvous interrupt vector with SAL */
1944         while (1) {
1945                 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1946                                               SAL_MC_PARAM_MECHANISM_INT,
1947                                               IA64_MCA_RENDEZ_VECTOR,
1948                                               timeout,
1949                                               SAL_MC_PARAM_RZ_ALWAYS);
1950                 rc = isrv.status;
1951                 if (rc == 0)
1952                         break;
1953                 if (rc == -2) {
1954                         printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1955                                 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1956                         timeout = isrv.v0;
1957                         (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1958                         continue;
1959                 }
1960                 printk(KERN_ERR "Failed to register rendezvous interrupt "
1961                        "with SAL (status %ld)\n", rc);
1962                 return;
1963         }
1964
1965         /* Register the wakeup interrupt vector with SAL */
1966         isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1967                                       SAL_MC_PARAM_MECHANISM_INT,
1968                                       IA64_MCA_WAKEUP_VECTOR,
1969                                       0, 0);
1970         rc = isrv.status;
1971         if (rc) {
1972                 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1973                        "(status %ld)\n", rc);
1974                 return;
1975         }
1976
1977         IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1978
1979         ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1980         /*
1981          * XXX - disable SAL checksum by setting size to 0; should be
1982          *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1983          */
1984         ia64_mc_info.imi_mca_handler_size       = 0;
1985
1986         /* Register the os mca handler with SAL */
1987         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1988                                        ia64_mc_info.imi_mca_handler,
1989                                        ia64_tpa(mca_hldlr_ptr->gp),
1990                                        ia64_mc_info.imi_mca_handler_size,
1991                                        0, 0, 0)))
1992         {
1993                 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1994                        "(status %ld)\n", rc);
1995                 return;
1996         }
1997
1998         IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1999                        ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2000
2001         /*
2002          * XXX - disable SAL checksum by setting size to 0, should be
2003          * size of the actual init handler in mca_asm.S.
2004          */
2005         ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
2006         ia64_mc_info.imi_monarch_init_handler_size      = 0;
2007         ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
2008         ia64_mc_info.imi_slave_init_handler_size        = 0;
2009
2010         IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2011                        ia64_mc_info.imi_monarch_init_handler);
2012
2013         /* Register the os init handler with SAL */
2014         if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2015                                        ia64_mc_info.imi_monarch_init_handler,
2016                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2017                                        ia64_mc_info.imi_monarch_init_handler_size,
2018                                        ia64_mc_info.imi_slave_init_handler,
2019                                        ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2020                                        ia64_mc_info.imi_slave_init_handler_size)))
2021         {
2022                 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2023                        "(status %ld)\n", rc);
2024                 return;
2025         }
2026         if (register_die_notifier(&default_init_monarch_nb)) {
2027                 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2028                 return;
2029         }
2030
2031         IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2032
2033         /*
2034          *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2035          *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2036          */
2037         register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2038         register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2039         ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2040
2041         /* Setup the MCA rendezvous interrupt vector */
2042         register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2043
2044         /* Setup the MCA wakeup interrupt vector */
2045         register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2046
2047 #ifdef CONFIG_ACPI
2048         /* Setup the CPEI/P handler */
2049         register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2050 #endif
2051
2052         /* Initialize the areas set aside by the OS to buffer the
2053          * platform/processor error states for MCA/INIT/CMC
2054          * handling.
2055          */
2056         ia64_log_init(SAL_INFO_TYPE_MCA);
2057         ia64_log_init(SAL_INFO_TYPE_INIT);
2058         ia64_log_init(SAL_INFO_TYPE_CMC);
2059         ia64_log_init(SAL_INFO_TYPE_CPE);
2060
2061         mca_init = 1;
2062         printk(KERN_INFO "MCA related initialization done\n");
2063 }
2064
2065 /*
2066  * ia64_mca_late_init
2067  *
2068  *      Opportunity to setup things that require initialization later
2069  *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2070  *      platform doesn't support an interrupt driven mechanism.
2071  *
2072  *  Inputs  :   None
2073  *  Outputs :   Status
2074  */
2075 static int __init
2076 ia64_mca_late_init(void)
2077 {
2078         if (!mca_init)
2079                 return 0;
2080
2081         register_hotcpu_notifier(&mca_cpu_notifier);
2082
2083         /* Setup the CMCI/P vector and handler */
2084         init_timer(&cmc_poll_timer);
2085         cmc_poll_timer.function = ia64_mca_cmc_poll;
2086
2087         /* Unmask/enable the vector */
2088         cmc_polling_enabled = 0;
2089         schedule_work(&cmc_enable_work);
2090
2091         IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2092
2093 #ifdef CONFIG_ACPI
2094         /* Setup the CPEI/P vector and handler */
2095         cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2096         init_timer(&cpe_poll_timer);
2097         cpe_poll_timer.function = ia64_mca_cpe_poll;
2098
2099         {
2100                 irq_desc_t *desc;
2101                 unsigned int irq;
2102
2103                 if (cpe_vector >= 0) {
2104                         /* If platform supports CPEI, enable the irq. */
2105                         irq = local_vector_to_irq(cpe_vector);
2106                         if (irq > 0) {
2107                                 cpe_poll_enabled = 0;
2108                                 desc = irq_desc + irq;
2109                                 desc->status |= IRQ_PER_CPU;
2110                                 setup_irq(irq, &mca_cpe_irqaction);
2111                                 ia64_cpe_irq = irq;
2112                                 ia64_mca_register_cpev(cpe_vector);
2113                                 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2114                                         __func__);
2115                                 return 0;
2116                         }
2117                         printk(KERN_ERR "%s: Failed to find irq for CPE "
2118                                         "interrupt handler, vector %d\n",
2119                                         __func__, cpe_vector);
2120                 }
2121                 /* If platform doesn't support CPEI, get the timer going. */
2122                 if (cpe_poll_enabled) {
2123                         ia64_mca_cpe_poll(0UL);
2124                         IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2125                 }
2126         }
2127 #endif
2128
2129         return 0;
2130 }
2131
2132 device_initcall(ia64_mca_late_init);