1 #include <linux/errno.h>
2 #include <linux/signal.h>
3 #include <linux/sched.h>
4 #include <linux/ioport.h>
5 #include <linux/interrupt.h>
6 #include <linux/slab.h>
7 #include <linux/random.h>
8 #include <linux/smp_lock.h>
9 #include <linux/init.h>
10 #include <linux/kernel_stat.h>
11 #include <linux/sysdev.h>
12 #include <linux/bitops.h>
14 #include <asm/8253pit.h>
15 #include <asm/atomic.h>
16 #include <asm/system.h>
18 #include <asm/timer.h>
19 #include <asm/pgtable.h>
20 #include <asm/delay.h>
23 #include <asm/arch_hooks.h>
24 #include <asm/i8259.h>
29 * This is the 'legacy' 8259A Programmable Interrupt Controller,
30 * present in the majority of PC/AT boxes.
31 * plus some generic x86 specific things if generic specifics makes
33 * this file should become arch/i386/kernel/irq.c when the old irq.c
34 * moves to arch independent land
37 static int i8259A_auto_eoi;
38 DEFINE_SPINLOCK(i8259A_lock);
39 static void mask_and_ack_8259A(unsigned int);
41 static struct irq_chip i8259A_chip = {
43 .mask = disable_8259A_irq,
44 .unmask = enable_8259A_irq,
45 .mask_ack = mask_and_ack_8259A,
49 * 8259A PIC functions to handle ISA devices:
53 * This contains the irq mask for both 8259A irq controllers,
55 unsigned int cached_irq_mask = 0xffff;
58 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
59 * boards the timer interrupt is not really connected to any IO-APIC pin,
60 * it's fed to the master 8259A's IR0 line only.
62 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
63 * this 'mixed mode' IRQ handling costs nothing because it's only used
66 unsigned long io_apic_irqs;
68 void disable_8259A_irq(unsigned int irq)
70 unsigned int mask = 1 << irq;
73 spin_lock_irqsave(&i8259A_lock, flags);
74 cached_irq_mask |= mask;
76 outb(cached_slave_mask, PIC_SLAVE_IMR);
78 outb(cached_master_mask, PIC_MASTER_IMR);
79 spin_unlock_irqrestore(&i8259A_lock, flags);
82 void enable_8259A_irq(unsigned int irq)
84 unsigned int mask = ~(1 << irq);
87 spin_lock_irqsave(&i8259A_lock, flags);
88 cached_irq_mask &= mask;
90 outb(cached_slave_mask, PIC_SLAVE_IMR);
92 outb(cached_master_mask, PIC_MASTER_IMR);
93 spin_unlock_irqrestore(&i8259A_lock, flags);
96 int i8259A_irq_pending(unsigned int irq)
98 unsigned int mask = 1<<irq;
102 spin_lock_irqsave(&i8259A_lock, flags);
104 ret = inb(PIC_MASTER_CMD) & mask;
106 ret = inb(PIC_SLAVE_CMD) & (mask >> 8);
107 spin_unlock_irqrestore(&i8259A_lock, flags);
112 void make_8259A_irq(unsigned int irq)
114 disable_irq_nosync(irq);
115 io_apic_irqs &= ~(1<<irq);
116 set_irq_chip_and_handler_name(irq, &i8259A_chip, handle_level_irq,
122 * This function assumes to be called rarely. Switching between
123 * 8259A registers is slow.
124 * This has to be protected by the irq controller spinlock
125 * before being called.
127 static inline int i8259A_irq_real(unsigned int irq)
130 int irqmask = 1<<irq;
133 outb(0x0B,PIC_MASTER_CMD); /* ISR register */
134 value = inb(PIC_MASTER_CMD) & irqmask;
135 outb(0x0A,PIC_MASTER_CMD); /* back to the IRR register */
138 outb(0x0B,PIC_SLAVE_CMD); /* ISR register */
139 value = inb(PIC_SLAVE_CMD) & (irqmask >> 8);
140 outb(0x0A,PIC_SLAVE_CMD); /* back to the IRR register */
145 * Careful! The 8259A is a fragile beast, it pretty
146 * much _has_ to be done exactly like this (mask it
147 * first, _then_ send the EOI, and the order of EOI
148 * to the two 8259s is important!
150 static void mask_and_ack_8259A(unsigned int irq)
152 unsigned int irqmask = 1 << irq;
155 spin_lock_irqsave(&i8259A_lock, flags);
157 * Lightweight spurious IRQ detection. We do not want
158 * to overdo spurious IRQ handling - it's usually a sign
159 * of hardware problems, so we only do the checks we can
160 * do without slowing down good hardware unnecessarily.
162 * Note that IRQ7 and IRQ15 (the two spurious IRQs
163 * usually resulting from the 8259A-1|2 PICs) occur
164 * even if the IRQ is masked in the 8259A. Thus we
165 * can check spurious 8259A IRQs without doing the
166 * quite slow i8259A_irq_real() call for every IRQ.
167 * This does not cover 100% of spurious interrupts,
168 * but should be enough to warn the user that there
169 * is something bad going on ...
171 if (cached_irq_mask & irqmask)
172 goto spurious_8259A_irq;
173 cached_irq_mask |= irqmask;
177 inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */
178 outb(cached_slave_mask, PIC_SLAVE_IMR);
179 outb(0x60+(irq&7),PIC_SLAVE_CMD);/* 'Specific EOI' to slave */
180 outb(0x60+PIC_CASCADE_IR,PIC_MASTER_CMD); /* 'Specific EOI' to master-IRQ2 */
182 inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */
183 outb(cached_master_mask, PIC_MASTER_IMR);
184 outb(0x60+irq,PIC_MASTER_CMD); /* 'Specific EOI to master */
186 spin_unlock_irqrestore(&i8259A_lock, flags);
191 * this is the slow path - should happen rarely.
193 if (i8259A_irq_real(irq))
195 * oops, the IRQ _is_ in service according to the
196 * 8259A - not spurious, go handle it.
198 goto handle_real_irq;
201 static int spurious_irq_mask;
203 * At this point we can be sure the IRQ is spurious,
204 * lets ACK and report it. [once per IRQ]
206 if (!(spurious_irq_mask & irqmask)) {
207 printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
208 spurious_irq_mask |= irqmask;
210 atomic_inc(&irq_err_count);
212 * Theoretically we do not have to handle this IRQ,
213 * but in Linux this does not cause problems and is
216 goto handle_real_irq;
220 static char irq_trigger[2];
222 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
224 static void restore_ELCR(char *trigger)
226 outb(trigger[0], 0x4d0);
227 outb(trigger[1], 0x4d1);
230 static void save_ELCR(char *trigger)
232 /* IRQ 0,1,2,8,13 are marked as reserved */
233 trigger[0] = inb(0x4d0) & 0xF8;
234 trigger[1] = inb(0x4d1) & 0xDE;
237 static int i8259A_resume(struct sys_device *dev)
239 init_8259A(i8259A_auto_eoi);
240 restore_ELCR(irq_trigger);
244 static int i8259A_suspend(struct sys_device *dev, pm_message_t state)
246 save_ELCR(irq_trigger);
250 static int i8259A_shutdown(struct sys_device *dev)
252 /* Put the i8259A into a quiescent state that
253 * the kernel initialization code can get it
256 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
257 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-1 */
261 static struct sysdev_class i8259_sysdev_class = {
262 set_kset_name("i8259"),
263 .suspend = i8259A_suspend,
264 .resume = i8259A_resume,
265 .shutdown = i8259A_shutdown,
268 static struct sys_device device_i8259A = {
270 .cls = &i8259_sysdev_class,
273 static int __init i8259A_init_sysfs(void)
275 int error = sysdev_class_register(&i8259_sysdev_class);
277 error = sysdev_register(&device_i8259A);
281 device_initcall(i8259A_init_sysfs);
283 void init_8259A(int auto_eoi)
287 i8259A_auto_eoi = auto_eoi;
289 spin_lock_irqsave(&i8259A_lock, flags);
291 outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */
292 outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */
295 * outb_p - this has to work on a wide range of PC hardware.
297 outb_p(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */
298 outb_p(0x20 + 0, PIC_MASTER_IMR); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
299 outb_p(1U << PIC_CASCADE_IR, PIC_MASTER_IMR); /* 8259A-1 (the master) has a slave on IR2 */
300 if (auto_eoi) /* master does Auto EOI */
301 outb_p(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR);
302 else /* master expects normal EOI */
303 outb_p(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR);
305 outb_p(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */
306 outb_p(0x20 + 8, PIC_SLAVE_IMR); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
307 outb_p(PIC_CASCADE_IR, PIC_SLAVE_IMR); /* 8259A-2 is a slave on master's IR2 */
308 outb_p(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR); /* (slave's support for AEOI in flat mode is to be investigated) */
311 * In AEOI mode we just have to mask the interrupt
314 i8259A_chip.mask_ack = disable_8259A_irq;
316 i8259A_chip.mask_ack = mask_and_ack_8259A;
318 udelay(100); /* wait for 8259A to initialize */
320 outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */
321 outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */
323 spin_unlock_irqrestore(&i8259A_lock, flags);
327 * Note that on a 486, we don't want to do a SIGFPE on an irq13
328 * as the irq is unreliable, and exception 16 works correctly
329 * (ie as explained in the intel literature). On a 386, you
330 * can't use exception 16 due to bad IBM design, so we have to
331 * rely on the less exact irq13.
333 * Careful.. Not only is IRQ13 unreliable, but it is also
334 * leads to races. IBM designers who came up with it should
339 static irqreturn_t math_error_irq(int cpl, void *dev_id)
341 extern void math_error(void __user *);
343 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
345 math_error((void __user *)get_irq_regs()->eip);
350 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
351 * so allow interrupt sharing.
353 static struct irqaction fpu_irq = { math_error_irq, 0, CPU_MASK_NONE, "fpu", NULL, NULL };
355 void __init init_ISA_irqs (void)
359 #ifdef CONFIG_X86_LOCAL_APIC
364 for (i = 0; i < NR_IRQS; i++) {
365 irq_desc[i].status = IRQ_DISABLED;
366 irq_desc[i].action = NULL;
367 irq_desc[i].depth = 1;
371 * 16 old-style INTA-cycle interrupts:
373 set_irq_chip_and_handler_name(i, &i8259A_chip,
374 handle_level_irq, "XT");
377 * 'high' PCI IRQs filled in on demand
379 irq_desc[i].chip = &no_irq_chip;
384 void __init init_IRQ(void)
388 /* all the set up before the call gates are initialised */
389 pre_intr_init_hook();
392 * Cover the whole vector space, no vector can escape
393 * us. (some of these will be overridden and become
394 * 'special' SMP interrupts)
396 for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
397 int vector = FIRST_EXTERNAL_VECTOR + i;
400 if (vector != SYSCALL_VECTOR)
401 set_intr_gate(vector, interrupt[i]);
404 /* setup after call gates are initialised (usually add in
405 * the architecture specific gates)
410 * Set the clock to HZ Hz, we already have a valid
416 * External FPU? Set up irq13 if so, for
417 * original braindamaged IBM FERR coupling.
419 if (boot_cpu_data.hard_math && !cpu_has_fpu)
420 setup_irq(FPU_IRQ, &fpu_irq);
422 irq_ctx_init(smp_processor_id());