]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/blackfin/kernel/traps.c
bd41fca315dd011bce4083c8cb291ce3d8c84b64
[linux-2.6-omap-h63xx.git] / arch / blackfin / kernel / traps.c
1 /*
2  * File:         arch/blackfin/kernel/traps.c
3  * Based on:
4  * Author:       Hamish Macdonald
5  *
6  * Created:
7  * Description:  uses S/W interrupt 15 for the system calls
8  *
9  * Modified:
10  *               Copyright 2004-2006 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29
30 #include <linux/uaccess.h>
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/fs.h>
35 #include <asm/traps.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cplb.h>
38 #include <asm/blackfin.h>
39 #include <asm/irq_handler.h>
40 #include <linux/irq.h>
41 #include <asm/trace.h>
42 #include <asm/fixed_code.h>
43 #include <asm/dma.h>
44
45 #ifdef CONFIG_KGDB
46 # include <linux/debugger.h>
47 # include <linux/kgdb.h>
48
49 # define CHK_DEBUGGER_TRAP() \
50         do { \
51                 CHK_DEBUGGER(trapnr, sig, info.si_code, fp, ); \
52         } while (0)
53 # define CHK_DEBUGGER_TRAP_MAYBE() \
54         do { \
55                 if (kgdb_connected) \
56                         CHK_DEBUGGER_TRAP(); \
57         } while (0)
58 #else
59 # define CHK_DEBUGGER_TRAP() do { } while (0)
60 # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
61 #endif
62
63 /* Initiate the event table handler */
64 void __init trap_init(void)
65 {
66         CSYNC();
67         bfin_write_EVT3(trap);
68         CSYNC();
69 }
70
71 /*
72  * Used to save the RETX, SEQSTAT, I/D CPLB FAULT ADDR
73  * values across the transition from exception to IRQ5.
74  * We put these in L1, so they are going to be in a valid
75  * location during exception context
76  */
77 __attribute__((l1_data))
78 unsigned long saved_retx, saved_seqstat,
79         saved_icplb_fault_addr, saved_dcplb_fault_addr;
80
81 static void decode_address(char *buf, unsigned long address)
82 {
83         struct vm_list_struct *vml;
84         struct task_struct *p;
85         struct mm_struct *mm;
86         unsigned long flags, offset;
87         unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
88
89 #ifdef CONFIG_KALLSYMS
90         unsigned long symsize;
91         const char *symname;
92         char *modname;
93         char *delim = ":";
94         char namebuf[128];
95
96         /* look up the address and see if we are in kernel space */
97         symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
98
99         if (symname) {
100                 /* yeah! kernel space! */
101                 if (!modname)
102                         modname = delim = "";
103                 sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
104                               (void *)address, delim, modname, delim, symname,
105                               (unsigned long)offset);
106                 return;
107
108         }
109 #endif
110
111         /* Problem in fixed code section? */
112         if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
113                 sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
114                 return;
115         }
116
117         /* Problem somewhere before the kernel start address */
118         if (address < CONFIG_BOOT_LOAD) {
119                 sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
120                 return;
121         }
122
123         /* looks like we're off in user-land, so let's walk all the
124          * mappings of all our processes and see if we can't be a whee
125          * bit more specific
126          */
127         write_lock_irqsave(&tasklist_lock, flags);
128         for_each_process(p) {
129                 mm = (in_atomic ? p->mm : get_task_mm(p));
130                 if (!mm)
131                         continue;
132
133                 vml = mm->context.vmlist;
134                 while (vml) {
135                         struct vm_area_struct *vma = vml->vma;
136
137                         if (address >= vma->vm_start && address < vma->vm_end) {
138                                 char _tmpbuf[256];
139                                 char *name = p->comm;
140                                 struct file *file = vma->vm_file;
141
142                                 if (file)
143                                         name = d_path(&file->f_path, _tmpbuf,
144                                                       sizeof(_tmpbuf));
145
146                                 /* FLAT does not have its text aligned to the start of
147                                  * the map while FDPIC ELF does ...
148                                  */
149
150                                 /* before we can check flat/fdpic, we need to
151                                  * make sure current is valid
152                                  */
153                                 if ((unsigned long)current >= FIXED_CODE_START &&
154                                     !((unsigned long)current & 0x3)) {
155                                         if (current->mm &&
156                                             (address > current->mm->start_code) &&
157                                             (address < current->mm->end_code))
158                                                 offset = address - current->mm->start_code;
159                                         else
160                                                 offset = (address - vma->vm_start) +
161                                                          (vma->vm_pgoff << PAGE_SHIFT);
162
163                                         sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
164                                                 (void *)address, name, offset);
165                                 } else
166                                         sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
167                                                 (void *)address, name,
168                                                 vma->vm_start, vma->vm_end);
169
170                                 if (!in_atomic)
171                                         mmput(mm);
172
173                                 if (!strlen(buf))
174                                         sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
175
176                                 goto done;
177                         }
178
179                         vml = vml->next;
180                 }
181                 if (!in_atomic)
182                         mmput(mm);
183         }
184
185         /* we were unable to find this address anywhere */
186         sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
187
188 done:
189         write_unlock_irqrestore(&tasklist_lock, flags);
190 }
191
192 asmlinkage void double_fault_c(struct pt_regs *fp)
193 {
194         console_verbose();
195         oops_in_progress = 1;
196         printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
197 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
198         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) == VEC_UNCOV) {
199                 char buf[150];
200                 decode_address(buf, saved_retx);
201                 printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
202                         (int)saved_seqstat & SEQSTAT_EXCAUSE, buf);
203                 decode_address(buf, saved_dcplb_fault_addr);
204                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %s\n", buf);
205                 decode_address(buf, saved_icplb_fault_addr);
206                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %s\n", buf);
207
208                 decode_address(buf, fp->retx);
209                 printk(KERN_NOTICE "The instruction at %s caused a double exception\n",
210                         buf);
211         } else
212 #endif
213         {
214                 dump_bfin_process(fp);
215                 dump_bfin_mem(fp);
216                 show_regs(fp);
217         }
218         panic("Double Fault - unrecoverable event\n");
219
220 }
221
222 asmlinkage void trap_c(struct pt_regs *fp)
223 {
224 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
225         int j;
226 #endif
227         int sig = 0;
228         siginfo_t info;
229         unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
230
231         trace_buffer_save(j);
232
233         /* Important - be very careful dereferncing pointers - will lead to
234          * double faults if the stack has become corrupt
235          */
236
237         /* If the fault was caused by a kernel thread, or interrupt handler
238          * we will kernel panic, so the system reboots.
239          * If KGDB is enabled, don't set this for kernel breakpoints
240         */
241
242         /* TODO: check to see if we are in some sort of deferred HWERR
243          * that we should be able to recover from, not kernel panic
244          */
245         if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
246 #ifdef CONFIG_KGDB
247                 && (trapnr != VEC_EXCPT02)
248 #endif
249         ){
250                 console_verbose();
251                 oops_in_progress = 1;
252         } else if (current) {
253                 if (current->mm == NULL) {
254                         console_verbose();
255                         oops_in_progress = 1;
256                 }
257         }
258
259         /* trap_c() will be called for exceptions. During exceptions
260          * processing, the pc value should be set with retx value.
261          * With this change we can cleanup some code in signal.c- TODO
262          */
263         fp->orig_pc = fp->retx;
264         /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
265                 trapnr, fp->ipend, fp->pc, fp->retx); */
266
267         /* send the appropriate signal to the user program */
268         switch (trapnr) {
269
270         /* This table works in conjuction with the one in ./mach-common/entry.S
271          * Some exceptions are handled there (in assembly, in exception space)
272          * Some are handled here, (in C, in interrupt space)
273          * Some, like CPLB, are handled in both, where the normal path is
274          * handled in assembly/exception space, and the error path is handled
275          * here
276          */
277
278         /* 0x00 - Linux Syscall, getting here is an error */
279         /* 0x01 - userspace gdb breakpoint, handled here */
280         case VEC_EXCPT01:
281                 info.si_code = TRAP_ILLTRAP;
282                 sig = SIGTRAP;
283                 CHK_DEBUGGER_TRAP_MAYBE();
284                 /* Check if this is a breakpoint in kernel space */
285                 if (fp->ipend & 0xffc0)
286                         return;
287                 else
288                         break;
289 #ifdef CONFIG_KGDB
290         case VEC_EXCPT02 :               /* gdb connection */
291                 info.si_code = TRAP_ILLTRAP;
292                 sig = SIGTRAP;
293                 CHK_DEBUGGER_TRAP();
294                 return;
295 #else
296         /* 0x02 - User Defined, Caught by default */
297 #endif
298         /* 0x03 - User Defined, userspace stack overflow */
299         case VEC_EXCPT03:
300                 info.si_code = SEGV_STACKFLOW;
301                 sig = SIGSEGV;
302                 printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
303                 CHK_DEBUGGER_TRAP();
304                 break;
305         /* 0x04 - User Defined, Caught by default */
306         /* 0x05 - User Defined, Caught by default */
307         /* 0x06 - User Defined, Caught by default */
308         /* 0x07 - User Defined, Caught by default */
309         /* 0x08 - User Defined, Caught by default */
310         /* 0x09 - User Defined, Caught by default */
311         /* 0x0A - User Defined, Caught by default */
312         /* 0x0B - User Defined, Caught by default */
313         /* 0x0C - User Defined, Caught by default */
314         /* 0x0D - User Defined, Caught by default */
315         /* 0x0E - User Defined, Caught by default */
316         /* 0x0F - User Defined, Caught by default */
317         /* 0x10 HW Single step, handled here */
318         case VEC_STEP:
319                 info.si_code = TRAP_STEP;
320                 sig = SIGTRAP;
321                 CHK_DEBUGGER_TRAP_MAYBE();
322                 /* Check if this is a single step in kernel space */
323                 if (fp->ipend & 0xffc0)
324                         return;
325                 else
326                         break;
327         /* 0x11 - Trace Buffer Full, handled here */
328         case VEC_OVFLOW:
329                 info.si_code = TRAP_TRACEFLOW;
330                 sig = SIGTRAP;
331                 printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
332                 CHK_DEBUGGER_TRAP();
333                 break;
334         /* 0x12 - Reserved, Caught by default */
335         /* 0x13 - Reserved, Caught by default */
336         /* 0x14 - Reserved, Caught by default */
337         /* 0x15 - Reserved, Caught by default */
338         /* 0x16 - Reserved, Caught by default */
339         /* 0x17 - Reserved, Caught by default */
340         /* 0x18 - Reserved, Caught by default */
341         /* 0x19 - Reserved, Caught by default */
342         /* 0x1A - Reserved, Caught by default */
343         /* 0x1B - Reserved, Caught by default */
344         /* 0x1C - Reserved, Caught by default */
345         /* 0x1D - Reserved, Caught by default */
346         /* 0x1E - Reserved, Caught by default */
347         /* 0x1F - Reserved, Caught by default */
348         /* 0x20 - Reserved, Caught by default */
349         /* 0x21 - Undefined Instruction, handled here */
350         case VEC_UNDEF_I:
351                 info.si_code = ILL_ILLOPC;
352                 sig = SIGILL;
353                 printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
354                 CHK_DEBUGGER_TRAP();
355                 break;
356         /* 0x22 - Illegal Instruction Combination, handled here */
357         case VEC_ILGAL_I:
358                 info.si_code = ILL_ILLPARAOP;
359                 sig = SIGILL;
360                 printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
361                 CHK_DEBUGGER_TRAP();
362                 break;
363         /* 0x23 - Data CPLB protection violation, handled here */
364         case VEC_CPLB_VL:
365                 info.si_code = ILL_CPLB_VI;
366                 sig = SIGBUS;
367                 printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
368                 CHK_DEBUGGER_TRAP();
369                 break;
370         /* 0x24 - Data access misaligned, handled here */
371         case VEC_MISALI_D:
372                 info.si_code = BUS_ADRALN;
373                 sig = SIGBUS;
374                 printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
375                 CHK_DEBUGGER_TRAP();
376                 break;
377         /* 0x25 - Unrecoverable Event, handled here */
378         case VEC_UNCOV:
379                 info.si_code = ILL_ILLEXCPT;
380                 sig = SIGILL;
381                 printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
382                 CHK_DEBUGGER_TRAP();
383                 break;
384         /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
385                 error case is handled here */
386         case VEC_CPLB_M:
387                 info.si_code = BUS_ADRALN;
388                 sig = SIGBUS;
389                 printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
390                 CHK_DEBUGGER_TRAP();
391                 break;
392         /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
393         case VEC_CPLB_MHIT:
394                 info.si_code = ILL_CPLB_MULHIT;
395                 sig = SIGSEGV;
396 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
397                 if (saved_dcplb_fault_addr < FIXED_CODE_START)
398                         printk(KERN_NOTICE "NULL pointer access\n");
399                 else
400 #endif
401                         printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
402                 CHK_DEBUGGER_TRAP();
403                 break;
404         /* 0x28 - Emulation Watchpoint, handled here */
405         case VEC_WATCH:
406                 info.si_code = TRAP_WATCHPT;
407                 sig = SIGTRAP;
408                 pr_debug(EXC_0x28(KERN_DEBUG));
409                 CHK_DEBUGGER_TRAP_MAYBE();
410                 /* Check if this is a watchpoint in kernel space */
411                 if (fp->ipend & 0xffc0)
412                         return;
413                 else
414                         break;
415 #ifdef CONFIG_BF535
416         /* 0x29 - Instruction fetch access error (535 only) */
417         case VEC_ISTRU_VL:      /* ADSP-BF535 only (MH) */
418                 info.si_code = BUS_OPFETCH;
419                 sig = SIGBUS;
420                 printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
421                 CHK_DEBUGGER_TRAP();
422                 break;
423 #else
424         /* 0x29 - Reserved, Caught by default */
425 #endif
426         /* 0x2A - Instruction fetch misaligned, handled here */
427         case VEC_MISALI_I:
428                 info.si_code = BUS_ADRALN;
429                 sig = SIGBUS;
430                 printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
431                 CHK_DEBUGGER_TRAP();
432                 break;
433         /* 0x2B - Instruction CPLB protection violation, handled here */
434         case VEC_CPLB_I_VL:
435                 info.si_code = ILL_CPLB_VI;
436                 sig = SIGBUS;
437                 printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
438                 CHK_DEBUGGER_TRAP();
439                 break;
440         /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
441         case VEC_CPLB_I_M:
442                 info.si_code = ILL_CPLB_MISS;
443                 sig = SIGBUS;
444                 printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
445                 CHK_DEBUGGER_TRAP();
446                 break;
447         /* 0x2D - Instruction CPLB Multiple Hits, handled here */
448         case VEC_CPLB_I_MHIT:
449                 info.si_code = ILL_CPLB_MULHIT;
450                 sig = SIGSEGV;
451 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
452                 if (saved_icplb_fault_addr < FIXED_CODE_START)
453                         printk(KERN_NOTICE "Jump to NULL address\n");
454                 else
455 #endif
456                         printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
457                 CHK_DEBUGGER_TRAP();
458                 break;
459         /* 0x2E - Illegal use of Supervisor Resource, handled here */
460         case VEC_ILL_RES:
461                 info.si_code = ILL_PRVOPC;
462                 sig = SIGILL;
463                 printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
464                 CHK_DEBUGGER_TRAP();
465                 break;
466         /* 0x2F - Reserved, Caught by default */
467         /* 0x30 - Reserved, Caught by default */
468         /* 0x31 - Reserved, Caught by default */
469         /* 0x32 - Reserved, Caught by default */
470         /* 0x33 - Reserved, Caught by default */
471         /* 0x34 - Reserved, Caught by default */
472         /* 0x35 - Reserved, Caught by default */
473         /* 0x36 - Reserved, Caught by default */
474         /* 0x37 - Reserved, Caught by default */
475         /* 0x38 - Reserved, Caught by default */
476         /* 0x39 - Reserved, Caught by default */
477         /* 0x3A - Reserved, Caught by default */
478         /* 0x3B - Reserved, Caught by default */
479         /* 0x3C - Reserved, Caught by default */
480         /* 0x3D - Reserved, Caught by default */
481         /* 0x3E - Reserved, Caught by default */
482         /* 0x3F - Reserved, Caught by default */
483         case VEC_HWERR:
484                 info.si_code = BUS_ADRALN;
485                 sig = SIGBUS;
486                 switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
487                 /* System MMR Error */
488                 case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
489                         info.si_code = BUS_ADRALN;
490                         sig = SIGBUS;
491                         printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
492                         break;
493                 /* External Memory Addressing Error */
494                 case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
495                         info.si_code = BUS_ADRERR;
496                         sig = SIGBUS;
497                         printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
498                         break;
499                 /* Performance Monitor Overflow */
500                 case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
501                         printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
502                         break;
503                 /* RAISE 5 instruction */
504                 case (SEQSTAT_HWERRCAUSE_RAISE_5):
505                         printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
506                         break;
507                 default:        /* Reserved */
508                         printk(KERN_NOTICE HWC_default(KERN_NOTICE));
509                         break;
510                 }
511                 CHK_DEBUGGER_TRAP();
512                 break;
513         default:
514                 info.si_code = TRAP_ILLTRAP;
515                 sig = SIGTRAP;
516                 printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
517                         (fp->seqstat & SEQSTAT_EXCAUSE));
518                 CHK_DEBUGGER_TRAP();
519                 break;
520         }
521
522         BUG_ON(sig == 0);
523
524         if (sig != SIGTRAP) {
525                 unsigned long *stack;
526                 dump_bfin_process(fp);
527                 dump_bfin_mem(fp);
528                 show_regs(fp);
529
530                 /* Print out the trace buffer if it makes sense */
531 #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
532                 if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
533                         printk(KERN_NOTICE "No trace since you do not have "
534                                 "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
535                                 KERN_NOTICE "\n");
536                 else
537 #endif
538                         dump_bfin_trace_buffer();
539
540                 if (oops_in_progress) {
541                         /* Dump the current kernel stack */
542                         printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
543                         show_stack(current, NULL);
544
545                         print_modules();
546 #ifndef CONFIG_ACCESS_CHECK
547                         printk(KERN_EMERG "Please turn on "
548                                "CONFIG_ACCESS_CHECK\n");
549 #endif
550                         panic("Kernel exception");
551                 } else {
552                         /* Dump the user space stack */
553                         stack = (unsigned long *)rdusp();
554                         printk(KERN_NOTICE "Userspace Stack\n");
555                         show_stack(NULL, stack);
556                 }
557         }
558
559         info.si_signo = sig;
560         info.si_errno = 0;
561         info.si_addr = (void __user *)fp->pc;
562         force_sig_info(sig, &info, current);
563
564         trace_buffer_restore(j);
565         return;
566 }
567
568 /* Typical exception handling routines  */
569
570 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
571
572 /*
573  * Similar to get_user, do some address checking, then dereference
574  * Return true on sucess, false on bad address
575  */
576 bool get_instruction(unsigned short *val, unsigned short *address)
577 {
578
579         unsigned long addr;
580
581         addr = (unsigned long)address;
582
583         /* Check for odd addresses */
584         if (addr & 0x1)
585                 return false;
586
587         /* Check that things do not wrap around */
588         if (addr > (addr + 2))
589                 return false;
590
591         /*
592          * Since we are in exception context, we need to do a little address checking
593          * We need to make sure we are only accessing valid memory, and
594          * we don't read something in the async space that can hang forever
595          */
596         if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
597 #if L2_LENGTH != 0
598             (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
599 #endif
600             (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
601 #if L1_DATA_A_LENGTH != 0
602             (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
603 #endif
604 #if L1_DATA_B_LENGTH != 0
605             (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
606 #endif
607             (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
608             (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
609                addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
610             (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
611                addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
612             (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
613                addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
614             (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
615               addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
616                 *val = *address;
617                 return true;
618         }
619
620 #if L1_CODE_LENGTH != 0
621         if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
622                 dma_memcpy(val, address, 2);
623                 return true;
624         }
625 #endif
626
627
628         return false;
629 }
630
631 /* 
632  * decode the instruction if we are printing out the trace, as it
633  * makes things easier to follow, without running it through objdump
634  * These are the normal instructions which cause change of flow, which
635  * would be at the source of the trace buffer
636  */
637 void decode_instruction(unsigned short *address)
638 {
639         unsigned short opcode;
640
641         if (get_instruction(&opcode, address)) {
642                 if (opcode == 0x0010)
643                         printk("RTS");
644                 else if (opcode == 0x0011)
645                         printk("RTI");
646                 else if (opcode == 0x0012)
647                         printk("RTX");
648                 else if (opcode >= 0x0050 && opcode <= 0x0057)
649                         printk("JUMP (P%i)", opcode & 7);
650                 else if (opcode >= 0x0060 && opcode <= 0x0067)
651                         printk("CALL (P%i)", opcode & 7);
652                 else if (opcode >= 0x0070 && opcode <= 0x0077)
653                         printk("CALL (PC+P%i)", opcode & 7);
654                 else if (opcode >= 0x0080 && opcode <= 0x0087)
655                         printk("JUMP (PC+P%i)", opcode & 7);
656                 else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
657                         printk("IF !CC JUMP");
658                 else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
659                         printk("IF CC JUMP");
660                 else if (opcode >= 0x2000 && opcode <= 0x2fff)
661                         printk("JUMP.S");
662                 else if (opcode >= 0xe080 && opcode <= 0xe0ff)
663                         printk("LSETUP");
664                 else if (opcode >= 0xe200 && opcode <= 0xe2ff)
665                         printk("JUMP.L");
666                 else if (opcode >= 0xe300 && opcode <= 0xe3ff)
667                         printk("CALL pcrel");
668                 else
669                         printk("0x%04x", opcode);
670         }
671
672 }
673
674 void dump_bfin_trace_buffer(void)
675 {
676 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
677         int tflags, i = 0;
678         char buf[150];
679         unsigned short *addr;
680 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
681         int j, index;
682 #endif
683
684         trace_buffer_save(tflags);
685
686         printk(KERN_NOTICE "Hardware Trace:\n");
687
688 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
689         printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
690 #endif
691
692         if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
693                 for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
694                         decode_address(buf, (unsigned long)bfin_read_TBUF());
695                         printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
696                         addr = (unsigned short *)bfin_read_TBUF();
697                         decode_address(buf, (unsigned long)addr);
698                         printk(KERN_NOTICE "     Source : %s ", buf);
699                         decode_instruction(addr);
700                         printk("\n");
701                 }
702         }
703
704 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
705         if (trace_buff_offset)
706                 index = trace_buff_offset / 4;
707         else
708                 index = EXPAND_LEN;
709
710         j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
711         while (j) {
712                 decode_address(buf, software_trace_buff[index]);
713                 printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
714                 index -= 1;
715                 if (index < 0 )
716                         index = EXPAND_LEN;
717                 decode_address(buf, software_trace_buff[index]);
718                 printk(KERN_NOTICE "     Source : %s ", buf);
719                 decode_instruction((unsigned short *)software_trace_buff[index]);
720                 printk("\n");
721                 index -= 1;
722                 if (index < 0)
723                         index = EXPAND_LEN;
724                 j--;
725                 i++;
726         }
727 #endif
728
729         trace_buffer_restore(tflags);
730 #endif
731 }
732 EXPORT_SYMBOL(dump_bfin_trace_buffer);
733
734 /*
735  * Checks to see if the address pointed to is either a
736  * 16-bit CALL instruction, or a 32-bit CALL instruction
737  */
738 bool is_bfin_call(unsigned short *addr)
739 {
740         unsigned short opcode = 0, *ins_addr;
741         ins_addr = (unsigned short *)addr;
742
743         if (!get_instruction(&opcode, ins_addr))
744                 return false;
745
746         if ((opcode >= 0x0060 && opcode <= 0x0067) ||
747             (opcode >= 0x0070 && opcode <= 0x0077))
748                 return true;
749
750         ins_addr--;
751         if (!get_instruction(&opcode, ins_addr))
752                 return false;
753
754         if (opcode >= 0xE300 && opcode <= 0xE3FF)
755                 return true;
756
757         return false;
758
759 }
760 void show_stack(struct task_struct *task, unsigned long *stack)
761 {
762         unsigned int *addr, *endstack, *fp = 0, *frame;
763         unsigned short *ins_addr;
764         char buf[150];
765         unsigned int i, j, ret_addr, frame_no = 0;
766
767         /*
768          * If we have been passed a specific stack, use that one otherwise
769          *    if we have been passed a task structure, use that, otherwise
770          *    use the stack of where the variable "stack" exists
771          */
772
773         if (stack == NULL) {
774                 if (task) {
775                         /* We know this is a kernel stack, so this is the start/end */
776                         stack = (unsigned long *)task->thread.ksp;
777                         endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
778                 } else {
779                         /* print out the existing stack info */
780                         stack = (unsigned long *)&stack;
781                         endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
782                 }
783         } else
784                 endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
785
786         decode_address(buf, (unsigned int)stack);
787         printk(KERN_NOTICE "Stack info:\n" KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
788         addr = (unsigned int *)((unsigned int)stack & ~0x3F);
789
790         /* First thing is to look for a frame pointer */
791         for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
792                 addr < endstack; addr++, i++) {
793                 if (*addr & 0x1)
794                         continue;
795                 ins_addr = (unsigned short *)*addr;
796                 ins_addr--;
797                 if (is_bfin_call(ins_addr))
798                         fp = addr - 1;
799
800                 if (fp) {
801                         /* Let's check to see if it is a frame pointer */
802                         while (fp >= (addr - 1) && fp < endstack && fp)
803                                 fp = (unsigned int *)*fp;
804                         if (fp == 0 || fp == endstack) {
805                                 fp = addr - 1;
806                                 break;
807                         }
808                         fp = 0;
809                 }
810         }
811         if (fp) {
812                 frame = fp;
813                 printk(" FP: (0x%p)\n", fp);
814         } else
815                 frame = 0;
816
817         /*
818          * Now that we think we know where things are, we
819          * walk the stack again, this time printing things out
820          * incase there is no frame pointer, we still look for
821          * valid return addresses
822          */
823
824         /* First time print out data, next time, print out symbols */
825         for (j = 0; j <= 1; j++) {
826                 if (j)
827                         printk(KERN_NOTICE "Return addresses in stack:\n");
828                 else
829                         printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
830
831                 fp = frame;
832                 frame_no = 0;
833
834                 for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
835                      addr <= endstack; addr++, i++) {
836
837                         ret_addr = 0;
838                         if (!j && i % 8 == 0)
839                                 printk("\n" KERN_NOTICE "%p:",addr);
840
841                         /* if it is an odd address, or zero, just skip it */
842                         if (*addr & 0x1 || !*addr)
843                                 goto print;
844
845                         ins_addr = (unsigned short *)*addr;
846
847                         /* Go back one instruction, and see if it is a CALL */
848                         ins_addr--;
849                         ret_addr = is_bfin_call(ins_addr);
850  print:
851                         if (!j && stack == (unsigned long *)addr)
852                                 printk("[%08x]", *addr);
853                         else if (ret_addr)
854                                 if (j) {
855                                         decode_address(buf, (unsigned int)*addr);
856                                         if (frame == addr) {
857                                                 printk(KERN_NOTICE "   frame %2i : %s\n", frame_no, buf);
858                                                 continue;
859                                         }
860                                         printk(KERN_NOTICE "    address : %s\n", buf);
861                                 } else
862                                         printk("<%08x>", *addr);
863                         else if (fp == addr) {
864                                 if (j)
865                                         frame = addr+1;
866                                 else
867                                         printk("(%08x)", *addr);
868
869                                 fp = (unsigned int *)*addr;
870                                 frame_no++;
871
872                         } else if (!j)
873                                 printk(" %08x ", *addr);
874                 }
875                 if (!j)
876                         printk("\n");
877         }
878
879 }
880
881 void dump_stack(void)
882 {
883         unsigned long stack;
884 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
885         int tflags;
886 #endif
887         trace_buffer_save(tflags);
888         dump_bfin_trace_buffer();
889         show_stack(current, &stack);
890         trace_buffer_restore(tflags);
891 }
892 EXPORT_SYMBOL(dump_stack);
893
894 void dump_bfin_process(struct pt_regs *fp)
895 {
896         /* We should be able to look at fp->ipend, but we don't push it on the
897          * stack all the time, so do this until we fix that */
898         unsigned int context = bfin_read_IPEND();
899
900         if (oops_in_progress)
901                 printk(KERN_EMERG "Kernel OOPS in progress\n");
902
903         if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
904                 printk(KERN_NOTICE "HW Error context\n");
905         else if (context & 0x0020)
906                 printk(KERN_NOTICE "Deferred Exception context\n");
907         else if (context & 0x3FC0)
908                 printk(KERN_NOTICE "Interrupt context\n");
909         else if (context & 0x4000)
910                 printk(KERN_NOTICE "Deferred Interrupt context\n");
911         else if (context & 0x8000)
912                 printk(KERN_NOTICE "Kernel process context\n");
913
914         /* Because we are crashing, and pointers could be bad, we check things
915          * pretty closely before we use them
916          */
917         if ((unsigned long)current >= FIXED_CODE_START &&
918             !((unsigned long)current & 0x3) && current->pid) {
919                 printk(KERN_NOTICE "CURRENT PROCESS:\n");
920                 if (current->comm >= (char *)FIXED_CODE_START)
921                         printk(KERN_NOTICE "COMM=%s PID=%d\n",
922                                 current->comm, current->pid);
923                 else
924                         printk(KERN_NOTICE "COMM= invalid\n");
925
926                 if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
927                         printk(KERN_NOTICE  "TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n"
928                                 KERN_NOTICE " BSS = 0x%p-0x%p  USER-STACK = 0x%p\n"
929                                 KERN_NOTICE "\n",
930                                 (void *)current->mm->start_code,
931                                 (void *)current->mm->end_code,
932                                 (void *)current->mm->start_data,
933                                 (void *)current->mm->end_data,
934                                 (void *)current->mm->end_data,
935                                 (void *)current->mm->brk,
936                                 (void *)current->mm->start_stack);
937                 else
938                         printk(KERN_NOTICE "invalid mm\n");
939         } else
940                 printk(KERN_NOTICE "\n" KERN_NOTICE
941                      "No Valid process in current context\n");
942 }
943
944 void dump_bfin_mem(struct pt_regs *fp)
945 {
946         unsigned short *addr, *erraddr, val = 0, err = 0;
947         char sti = 0, buf[6];
948
949         erraddr = (void *)fp->pc;
950
951         printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
952
953         for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
954              addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
955              addr++) {
956                 if (!((unsigned long)addr & 0xF))
957                         printk("\n" KERN_NOTICE "0x%p: ", addr);
958
959                 if (get_instruction(&val, addr)) {
960                                 val = 0;
961                                 sprintf(buf, "????");
962                 } else
963                         sprintf(buf, "%04x", val);
964
965                 if (addr == erraddr) {
966                         printk("[%s]", buf);
967                         err = val;
968                 } else
969                         printk(" %s ", buf);
970
971                 /* Do any previous instructions turn on interrupts? */
972                 if (addr <= erraddr &&                          /* in the past */
973                     ((val >= 0x0040 && val <= 0x0047) ||        /* STI instruction */
974                       val == 0x017b))                           /* [SP++] = RETI */
975                         sti = 1;
976         }
977
978         printk("\n");
979
980         /* Hardware error interrupts can be deferred */
981         if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
982             oops_in_progress)){
983                 printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
984 #ifndef CONFIG_DEBUG_HWERR
985                 printk(KERN_NOTICE "The remaining message may be meaningless\n"
986                         KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
987                          " better idea where it came from\n");
988 #else
989                 /* If we are handling only one peripheral interrupt
990                  * and current mm and pid are valid, and the last error
991                  * was in that user space process's text area
992                  * print it out - because that is where the problem exists
993                  */
994                 if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
995                      (current->pid && current->mm)) {
996                         /* And the last RETI points to the current userspace context */
997                         if ((fp + 1)->pc >= current->mm->start_code &&
998                             (fp + 1)->pc <= current->mm->end_code) {
999                                 printk(KERN_NOTICE "It might be better to look around here : \n");
1000                                 printk(KERN_NOTICE "-------------------------------------------\n");
1001                                 show_regs(fp + 1);
1002                                 printk(KERN_NOTICE "-------------------------------------------\n");
1003                         }
1004                 }
1005 #endif
1006         }
1007 }
1008
1009 void show_regs(struct pt_regs *fp)
1010 {
1011         char buf [150];
1012         struct irqaction *action;
1013         unsigned int i;
1014         unsigned long flags;
1015
1016         printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
1017         printk(KERN_NOTICE " SEQSTAT: %08lx  IPEND: %04lx  SYSCFG: %04lx\n",
1018                 (long)fp->seqstat, fp->ipend, fp->syscfg);
1019         printk(KERN_NOTICE "  HWERRCAUSE: 0x%lx\n",
1020                 (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
1021         printk(KERN_NOTICE "  EXCAUSE   : 0x%lx\n",
1022                 fp->seqstat & SEQSTAT_EXCAUSE);
1023         for (i = 6; i <= 15 ; i++) {
1024                 if (fp->ipend & (1 << i)) {
1025                         decode_address(buf, bfin_read32(EVT0 + 4*i));
1026                         printk(KERN_NOTICE "  physical IVG%i asserted : %s\n", i, buf);
1027                 }
1028         }
1029
1030         /* if no interrupts are going off, don't print this out */
1031         if (fp->ipend & ~0x3F) {
1032                 for (i = 0; i < (NR_IRQS - 1); i++) {
1033                         spin_lock_irqsave(&irq_desc[i].lock, flags);
1034                         action = irq_desc[i].action;
1035                         if (!action)
1036                                 goto unlock;
1037
1038                         decode_address(buf, (unsigned int)action->handler);
1039                         printk(KERN_NOTICE "  logical irq %3d mapped  : %s", i, buf);
1040                         for (action = action->next; action; action = action->next) {
1041                                 decode_address(buf, (unsigned int)action->handler);
1042                                 printk(", %s", buf);
1043                         }
1044                         printk("\n");
1045 unlock:
1046                         spin_unlock_irqrestore(&irq_desc[i].lock, flags);
1047                 }
1048         }
1049
1050         decode_address(buf, fp->rete);
1051         printk(KERN_NOTICE " RETE: %s\n", buf);
1052         decode_address(buf, fp->retn);
1053         printk(KERN_NOTICE " RETN: %s\n", buf);
1054         decode_address(buf, fp->retx);
1055         printk(KERN_NOTICE " RETX: %s\n", buf);
1056         decode_address(buf, fp->rets);
1057         printk(KERN_NOTICE " RETS: %s\n", buf);
1058         decode_address(buf, fp->pc);
1059         printk(KERN_NOTICE " PC  : %s\n", buf);
1060
1061         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
1062             (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
1063                 decode_address(buf, saved_dcplb_fault_addr);
1064                 printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
1065                 decode_address(buf, saved_icplb_fault_addr);
1066                 printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
1067         }
1068
1069         printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
1070         printk(KERN_NOTICE " R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
1071                 fp->r0, fp->r1, fp->r2, fp->r3);
1072         printk(KERN_NOTICE " R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
1073                 fp->r4, fp->r5, fp->r6, fp->r7);
1074         printk(KERN_NOTICE " P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
1075                 fp->p0, fp->p1, fp->p2, fp->p3);
1076         printk(KERN_NOTICE " P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
1077                 fp->p4, fp->p5, fp->fp, (long)fp);
1078         printk(KERN_NOTICE " LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
1079                 fp->lb0, fp->lt0, fp->lc0);
1080         printk(KERN_NOTICE " LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
1081                 fp->lb1, fp->lt1, fp->lc1);
1082         printk(KERN_NOTICE " B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
1083                 fp->b0, fp->l0, fp->m0, fp->i0);
1084         printk(KERN_NOTICE " B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
1085                 fp->b1, fp->l1, fp->m1, fp->i1);
1086         printk(KERN_NOTICE " B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
1087                 fp->b2, fp->l2, fp->m2, fp->i2);
1088         printk(KERN_NOTICE " B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
1089                 fp->b3, fp->l3, fp->m3, fp->i3);
1090         printk(KERN_NOTICE "A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
1091                 fp->a0w, fp->a0x, fp->a1w, fp->a1x);
1092
1093         printk(KERN_NOTICE "USP : %08lx  ASTAT: %08lx\n",
1094                 rdusp(), fp->astat);
1095
1096         printk(KERN_NOTICE "\n");
1097 }
1098
1099 #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
1100 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
1101 #endif
1102
1103 asmlinkage int sys_bfin_spinlock(int *spinlock)
1104 {
1105         int ret = 0;
1106         int tmp = 0;
1107
1108         local_irq_disable();
1109         ret = get_user(tmp, spinlock);
1110         if (ret == 0) {
1111                 if (tmp)
1112                         ret = 1;
1113                 tmp = 1;
1114                 put_user(tmp, spinlock);
1115         }
1116         local_irq_enable();
1117         return ret;
1118 }
1119
1120 int bfin_request_exception(unsigned int exception, void (*handler)(void))
1121 {
1122         void (*curr_handler)(void);
1123
1124         if (exception > 0x3F)
1125                 return -EINVAL;
1126
1127         curr_handler = ex_table[exception];
1128
1129         if (curr_handler != ex_replaceable)
1130                 return -EBUSY;
1131
1132         ex_table[exception] = handler;
1133
1134         return 0;
1135 }
1136 EXPORT_SYMBOL(bfin_request_exception);
1137
1138 int bfin_free_exception(unsigned int exception, void (*handler)(void))
1139 {
1140         void (*curr_handler)(void);
1141
1142         if (exception > 0x3F)
1143                 return -EINVAL;
1144
1145         curr_handler = ex_table[exception];
1146
1147         if (curr_handler != handler)
1148                 return -EBUSY;
1149
1150         ex_table[exception] = ex_replaceable;
1151
1152         return 0;
1153 }
1154 EXPORT_SYMBOL(bfin_free_exception);
1155
1156 void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
1157 {
1158         switch (cplb_panic) {
1159         case CPLB_NO_UNLOCKED:
1160                 printk(KERN_EMERG "All CPLBs are locked\n");
1161                 break;
1162         case CPLB_PROT_VIOL:
1163                 return;
1164         case CPLB_NO_ADDR_MATCH:
1165                 return;
1166         case CPLB_UNKNOWN_ERR:
1167                 printk(KERN_EMERG "Unknown CPLB Exception\n");
1168                 break;
1169         }
1170
1171         oops_in_progress = 1;
1172
1173         dump_bfin_process(fp);
1174         dump_bfin_mem(fp);
1175         show_regs(fp);
1176         dump_stack();
1177         panic("Unrecoverable event\n");
1178 }