]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/blackfin/kernel/traps.c
17d8e4172896c6dabfe3e48eb122b6e517d0435f
[linux-2.6-omap-h63xx.git] / arch / blackfin / kernel / traps.c
1 /*
2  * File:         arch/blackfin/kernel/traps.c
3  * Based on:
4  * Author:       Hamish Macdonald
5  *
6  * Created:
7  * Description:  uses S/W interrupt 15 for the system calls
8  *
9  * Modified:
10  *               Copyright 2004-2006 Analog Devices Inc.
11  *
12  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, see the file COPYING, or write
26  * to the Free Software Foundation, Inc.,
27  * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
28  */
29
30 #include <linux/uaccess.h>
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/fs.h>
35 #include <asm/traps.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cplb.h>
38 #include <asm/blackfin.h>
39 #include <asm/irq_handler.h>
40 #include <linux/irq.h>
41 #include <asm/trace.h>
42 #include <asm/fixed_code.h>
43
44 #ifdef CONFIG_KGDB
45 # include <linux/kgdb.h>
46
47 # define CHK_DEBUGGER_TRAP() \
48         do { \
49                 kgdb_handle_exception(trapnr, sig, info.si_code, fp); \
50         } while (0)
51 # define CHK_DEBUGGER_TRAP_MAYBE() \
52         do { \
53                 if (kgdb_connected) \
54                         CHK_DEBUGGER_TRAP(); \
55         } while (0)
56 #else
57 # define CHK_DEBUGGER_TRAP() do { } while (0)
58 # define CHK_DEBUGGER_TRAP_MAYBE() do { } while (0)
59 #endif
60
61
62 #ifdef CONFIG_DEBUG_VERBOSE
63 #define verbose_printk(fmt, arg...) \
64         printk(fmt, ##arg)
65 #else
66 #define verbose_printk(fmt, arg...) \
67         ({ if (0) printk(fmt, ##arg); 0; })
68 #endif
69
70 /* Initiate the event table handler */
71 void __init trap_init(void)
72 {
73         CSYNC();
74         bfin_write_EVT3(trap);
75         CSYNC();
76 }
77
78 static void decode_address(char *buf, unsigned long address)
79 {
80 #ifdef CONFIG_DEBUG_VERBOSE
81         struct vm_list_struct *vml;
82         struct task_struct *p;
83         struct mm_struct *mm;
84         unsigned long flags, offset;
85         unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
86
87 #ifdef CONFIG_KALLSYMS
88         unsigned long symsize;
89         const char *symname;
90         char *modname;
91         char *delim = ":";
92         char namebuf[128];
93
94         /* look up the address and see if we are in kernel space */
95         symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
96
97         if (symname) {
98                 /* yeah! kernel space! */
99                 if (!modname)
100                         modname = delim = "";
101                 sprintf(buf, "<0x%p> { %s%s%s%s + 0x%lx }",
102                               (void *)address, delim, modname, delim, symname,
103                               (unsigned long)offset);
104                 return;
105
106         }
107 #endif
108
109         /* Problem in fixed code section? */
110         if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
111                 sprintf(buf, "<0x%p> /* Maybe fixed code section */", (void *)address);
112                 return;
113         }
114
115         /* Problem somewhere before the kernel start address */
116         if (address < CONFIG_BOOT_LOAD) {
117                 sprintf(buf, "<0x%p> /* Maybe null pointer? */", (void *)address);
118                 return;
119         }
120
121         /* looks like we're off in user-land, so let's walk all the
122          * mappings of all our processes and see if we can't be a whee
123          * bit more specific
124          */
125         write_lock_irqsave(&tasklist_lock, flags);
126         for_each_process(p) {
127                 mm = (in_atomic ? p->mm : get_task_mm(p));
128                 if (!mm)
129                         continue;
130
131                 vml = mm->context.vmlist;
132                 while (vml) {
133                         struct vm_area_struct *vma = vml->vma;
134
135                         if (address >= vma->vm_start && address < vma->vm_end) {
136                                 char _tmpbuf[256];
137                                 char *name = p->comm;
138                                 struct file *file = vma->vm_file;
139
140                                 if (file) {
141                                         char *d_name = d_path(&file->f_path, _tmpbuf,
142                                                       sizeof(_tmpbuf));
143                                         if (!IS_ERR(d_name))
144                                                 name = d_name;
145                                 }
146
147                                 /* FLAT does not have its text aligned to the start of
148                                  * the map while FDPIC ELF does ...
149                                  */
150
151                                 /* before we can check flat/fdpic, we need to
152                                  * make sure current is valid
153                                  */
154                                 if ((unsigned long)current >= FIXED_CODE_START &&
155                                     !((unsigned long)current & 0x3)) {
156                                         if (current->mm &&
157                                             (address > current->mm->start_code) &&
158                                             (address < current->mm->end_code))
159                                                 offset = address - current->mm->start_code;
160                                         else
161                                                 offset = (address - vma->vm_start) +
162                                                          (vma->vm_pgoff << PAGE_SHIFT);
163
164                                         sprintf(buf, "<0x%p> [ %s + 0x%lx ]",
165                                                 (void *)address, name, offset);
166                                 } else
167                                         sprintf(buf, "<0x%p> [ %s vma:0x%lx-0x%lx]",
168                                                 (void *)address, name,
169                                                 vma->vm_start, vma->vm_end);
170
171                                 if (!in_atomic)
172                                         mmput(mm);
173
174                                 if (!strlen(buf))
175                                         sprintf(buf, "<0x%p> [ %s ] dynamic memory", (void *)address, name);
176
177                                 goto done;
178                         }
179
180                         vml = vml->next;
181                 }
182                 if (!in_atomic)
183                         mmput(mm);
184         }
185
186         /* we were unable to find this address anywhere */
187         sprintf(buf, "<0x%p> /* kernel dynamic memory */", (void *)address);
188
189 done:
190         write_unlock_irqrestore(&tasklist_lock, flags);
191 #else
192         sprintf(buf, " ");
193 #endif
194 }
195
196 asmlinkage void double_fault_c(struct pt_regs *fp)
197 {
198         console_verbose();
199         oops_in_progress = 1;
200 #ifdef CONFIG_DEBUG_VERBOSE
201         printk(KERN_EMERG "\n" KERN_EMERG "Double Fault\n");
202 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
203         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) == VEC_UNCOV) {
204                 unsigned int cpu = smp_processor_id();
205                 char buf[150];
206                 decode_address(buf, cpu_pda[cpu].retx);
207                 printk(KERN_EMERG "While handling exception (EXCAUSE = 0x%x) at %s:\n",
208                         (unsigned int)cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE, buf);
209                 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
210                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %s\n", buf);
211                 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
212                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %s\n", buf);
213
214                 decode_address(buf, fp->retx);
215                 printk(KERN_NOTICE "The instruction at %s caused a double exception\n", buf);
216         } else
217 #endif
218         {
219                 dump_bfin_process(fp);
220                 dump_bfin_mem(fp);
221                 show_regs(fp);
222         }
223 #endif
224         panic("Double Fault - unrecoverable event\n");
225
226 }
227
228 asmlinkage void trap_c(struct pt_regs *fp)
229 {
230 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
231         int j;
232 #endif
233 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
234         unsigned int cpu = smp_processor_id();
235 #endif
236         int sig = 0;
237         siginfo_t info;
238         unsigned long trapnr = fp->seqstat & SEQSTAT_EXCAUSE;
239
240         trace_buffer_save(j);
241
242         /* Important - be very careful dereferncing pointers - will lead to
243          * double faults if the stack has become corrupt
244          */
245
246         /* If the fault was caused by a kernel thread, or interrupt handler
247          * we will kernel panic, so the system reboots.
248          * If KGDB is enabled, don't set this for kernel breakpoints
249         */
250
251         /* TODO: check to see if we are in some sort of deferred HWERR
252          * that we should be able to recover from, not kernel panic
253          */
254         if ((bfin_read_IPEND() & 0xFFC0) && (trapnr != VEC_STEP)
255 #ifdef CONFIG_KGDB
256                 && (trapnr != VEC_EXCPT02)
257 #endif
258         ){
259                 console_verbose();
260                 oops_in_progress = 1;
261         } else if (current) {
262                 if (current->mm == NULL) {
263                         console_verbose();
264                         oops_in_progress = 1;
265                 }
266         }
267
268         /* trap_c() will be called for exceptions. During exceptions
269          * processing, the pc value should be set with retx value.
270          * With this change we can cleanup some code in signal.c- TODO
271          */
272         fp->orig_pc = fp->retx;
273         /* printk("exception: 0x%x, ipend=%x, reti=%x, retx=%x\n",
274                 trapnr, fp->ipend, fp->pc, fp->retx); */
275
276         /* send the appropriate signal to the user program */
277         switch (trapnr) {
278
279         /* This table works in conjuction with the one in ./mach-common/entry.S
280          * Some exceptions are handled there (in assembly, in exception space)
281          * Some are handled here, (in C, in interrupt space)
282          * Some, like CPLB, are handled in both, where the normal path is
283          * handled in assembly/exception space, and the error path is handled
284          * here
285          */
286
287         /* 0x00 - Linux Syscall, getting here is an error */
288         /* 0x01 - userspace gdb breakpoint, handled here */
289         case VEC_EXCPT01:
290                 info.si_code = TRAP_ILLTRAP;
291                 sig = SIGTRAP;
292                 CHK_DEBUGGER_TRAP_MAYBE();
293                 /* Check if this is a breakpoint in kernel space */
294                 if (fp->ipend & 0xffc0)
295                         return;
296                 else
297                         break;
298         /* 0x03 - User Defined, userspace stack overflow */
299         case VEC_EXCPT03:
300                 info.si_code = SEGV_STACKFLOW;
301                 sig = SIGSEGV;
302                 verbose_printk(KERN_NOTICE EXC_0x03(KERN_NOTICE));
303                 CHK_DEBUGGER_TRAP_MAYBE();
304                 break;
305         /* 0x02 - KGDB initial connection and break signal trap */
306         case VEC_EXCPT02:
307 #ifdef CONFIG_KGDB
308                 info.si_code = TRAP_ILLTRAP;
309                 sig = SIGTRAP;
310                 CHK_DEBUGGER_TRAP();
311                 return;
312 #endif
313         /* 0x04 - User Defined */
314         /* 0x05 - User Defined */
315         /* 0x06 - User Defined */
316         /* 0x07 - User Defined */
317         /* 0x08 - User Defined */
318         /* 0x09 - User Defined */
319         /* 0x0A - User Defined */
320         /* 0x0B - User Defined */
321         /* 0x0C - User Defined */
322         /* 0x0D - User Defined */
323         /* 0x0E - User Defined */
324         /* 0x0F - User Defined */
325         /* If we got here, it is most likely that someone was trying to use a
326          * custom exception handler, and it is not actually installed properly
327          */
328         case VEC_EXCPT04 ... VEC_EXCPT15:
329                 info.si_code = ILL_ILLPARAOP;
330                 sig = SIGILL;
331                 verbose_printk(KERN_NOTICE EXC_0x04(KERN_NOTICE));
332                 CHK_DEBUGGER_TRAP_MAYBE();
333                 break;
334         /* 0x10 HW Single step, handled here */
335         case VEC_STEP:
336                 info.si_code = TRAP_STEP;
337                 sig = SIGTRAP;
338                 CHK_DEBUGGER_TRAP_MAYBE();
339                 /* Check if this is a single step in kernel space */
340                 if (fp->ipend & 0xffc0)
341                         return;
342                 else
343                         break;
344         /* 0x11 - Trace Buffer Full, handled here */
345         case VEC_OVFLOW:
346                 info.si_code = TRAP_TRACEFLOW;
347                 sig = SIGTRAP;
348                 verbose_printk(KERN_NOTICE EXC_0x11(KERN_NOTICE));
349                 CHK_DEBUGGER_TRAP_MAYBE();
350                 break;
351         /* 0x12 - Reserved, Caught by default */
352         /* 0x13 - Reserved, Caught by default */
353         /* 0x14 - Reserved, Caught by default */
354         /* 0x15 - Reserved, Caught by default */
355         /* 0x16 - Reserved, Caught by default */
356         /* 0x17 - Reserved, Caught by default */
357         /* 0x18 - Reserved, Caught by default */
358         /* 0x19 - Reserved, Caught by default */
359         /* 0x1A - Reserved, Caught by default */
360         /* 0x1B - Reserved, Caught by default */
361         /* 0x1C - Reserved, Caught by default */
362         /* 0x1D - Reserved, Caught by default */
363         /* 0x1E - Reserved, Caught by default */
364         /* 0x1F - Reserved, Caught by default */
365         /* 0x20 - Reserved, Caught by default */
366         /* 0x21 - Undefined Instruction, handled here */
367         case VEC_UNDEF_I:
368                 info.si_code = ILL_ILLOPC;
369                 sig = SIGILL;
370                 verbose_printk(KERN_NOTICE EXC_0x21(KERN_NOTICE));
371                 CHK_DEBUGGER_TRAP_MAYBE();
372                 break;
373         /* 0x22 - Illegal Instruction Combination, handled here */
374         case VEC_ILGAL_I:
375                 info.si_code = ILL_ILLPARAOP;
376                 sig = SIGILL;
377                 verbose_printk(KERN_NOTICE EXC_0x22(KERN_NOTICE));
378                 CHK_DEBUGGER_TRAP_MAYBE();
379                 break;
380         /* 0x23 - Data CPLB protection violation, handled here */
381         case VEC_CPLB_VL:
382                 info.si_code = ILL_CPLB_VI;
383                 sig = SIGBUS;
384                 verbose_printk(KERN_NOTICE EXC_0x23(KERN_NOTICE));
385                 CHK_DEBUGGER_TRAP_MAYBE();
386                 break;
387         /* 0x24 - Data access misaligned, handled here */
388         case VEC_MISALI_D:
389                 info.si_code = BUS_ADRALN;
390                 sig = SIGBUS;
391                 verbose_printk(KERN_NOTICE EXC_0x24(KERN_NOTICE));
392                 CHK_DEBUGGER_TRAP_MAYBE();
393                 break;
394         /* 0x25 - Unrecoverable Event, handled here */
395         case VEC_UNCOV:
396                 info.si_code = ILL_ILLEXCPT;
397                 sig = SIGILL;
398                 verbose_printk(KERN_NOTICE EXC_0x25(KERN_NOTICE));
399                 CHK_DEBUGGER_TRAP_MAYBE();
400                 break;
401         /* 0x26 - Data CPLB Miss, normal case is handled in _cplb_hdr,
402                 error case is handled here */
403         case VEC_CPLB_M:
404                 info.si_code = BUS_ADRALN;
405                 sig = SIGBUS;
406                 verbose_printk(KERN_NOTICE EXC_0x26(KERN_NOTICE));
407                 break;
408         /* 0x27 - Data CPLB Multiple Hits - Linux Trap Zero, handled here */
409         case VEC_CPLB_MHIT:
410                 info.si_code = ILL_CPLB_MULHIT;
411                 sig = SIGSEGV;
412 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
413                 if (cpu_pda[cpu].dcplb_fault_addr < FIXED_CODE_START)
414                         verbose_printk(KERN_NOTICE "NULL pointer access\n");
415                 else
416 #endif
417                         verbose_printk(KERN_NOTICE EXC_0x27(KERN_NOTICE));
418                 CHK_DEBUGGER_TRAP_MAYBE();
419                 break;
420         /* 0x28 - Emulation Watchpoint, handled here */
421         case VEC_WATCH:
422                 info.si_code = TRAP_WATCHPT;
423                 sig = SIGTRAP;
424                 pr_debug(EXC_0x28(KERN_DEBUG));
425                 CHK_DEBUGGER_TRAP_MAYBE();
426                 /* Check if this is a watchpoint in kernel space */
427                 if (fp->ipend & 0xffc0)
428                         return;
429                 else
430                         break;
431 #ifdef CONFIG_BF535
432         /* 0x29 - Instruction fetch access error (535 only) */
433         case VEC_ISTRU_VL:      /* ADSP-BF535 only (MH) */
434                 info.si_code = BUS_OPFETCH;
435                 sig = SIGBUS;
436                 verbose_printk(KERN_NOTICE "BF535: VEC_ISTRU_VL\n");
437                 CHK_DEBUGGER_TRAP_MAYBE();
438                 break;
439 #else
440         /* 0x29 - Reserved, Caught by default */
441 #endif
442         /* 0x2A - Instruction fetch misaligned, handled here */
443         case VEC_MISALI_I:
444                 info.si_code = BUS_ADRALN;
445                 sig = SIGBUS;
446                 verbose_printk(KERN_NOTICE EXC_0x2A(KERN_NOTICE));
447                 CHK_DEBUGGER_TRAP_MAYBE();
448                 break;
449         /* 0x2B - Instruction CPLB protection violation, handled here */
450         case VEC_CPLB_I_VL:
451                 info.si_code = ILL_CPLB_VI;
452                 sig = SIGBUS;
453                 verbose_printk(KERN_NOTICE EXC_0x2B(KERN_NOTICE));
454                 CHK_DEBUGGER_TRAP_MAYBE();
455                 break;
456         /* 0x2C - Instruction CPLB miss, handled in _cplb_hdr */
457         case VEC_CPLB_I_M:
458                 info.si_code = ILL_CPLB_MISS;
459                 sig = SIGBUS;
460                 verbose_printk(KERN_NOTICE EXC_0x2C(KERN_NOTICE));
461                 break;
462         /* 0x2D - Instruction CPLB Multiple Hits, handled here */
463         case VEC_CPLB_I_MHIT:
464                 info.si_code = ILL_CPLB_MULHIT;
465                 sig = SIGSEGV;
466 #ifdef CONFIG_DEBUG_HUNT_FOR_ZERO
467                 if (cpu_pda[cpu].icplb_fault_addr < FIXED_CODE_START)
468                         verbose_printk(KERN_NOTICE "Jump to NULL address\n");
469                 else
470 #endif
471                         verbose_printk(KERN_NOTICE EXC_0x2D(KERN_NOTICE));
472                 CHK_DEBUGGER_TRAP_MAYBE();
473                 break;
474         /* 0x2E - Illegal use of Supervisor Resource, handled here */
475         case VEC_ILL_RES:
476                 info.si_code = ILL_PRVOPC;
477                 sig = SIGILL;
478                 verbose_printk(KERN_NOTICE EXC_0x2E(KERN_NOTICE));
479                 CHK_DEBUGGER_TRAP_MAYBE();
480                 break;
481         /* 0x2F - Reserved, Caught by default */
482         /* 0x30 - Reserved, Caught by default */
483         /* 0x31 - Reserved, Caught by default */
484         /* 0x32 - Reserved, Caught by default */
485         /* 0x33 - Reserved, Caught by default */
486         /* 0x34 - Reserved, Caught by default */
487         /* 0x35 - Reserved, Caught by default */
488         /* 0x36 - Reserved, Caught by default */
489         /* 0x37 - Reserved, Caught by default */
490         /* 0x38 - Reserved, Caught by default */
491         /* 0x39 - Reserved, Caught by default */
492         /* 0x3A - Reserved, Caught by default */
493         /* 0x3B - Reserved, Caught by default */
494         /* 0x3C - Reserved, Caught by default */
495         /* 0x3D - Reserved, Caught by default */
496         /* 0x3E - Reserved, Caught by default */
497         /* 0x3F - Reserved, Caught by default */
498         case VEC_HWERR:
499                 info.si_code = BUS_ADRALN;
500                 sig = SIGBUS;
501                 switch (fp->seqstat & SEQSTAT_HWERRCAUSE) {
502                 /* System MMR Error */
503                 case (SEQSTAT_HWERRCAUSE_SYSTEM_MMR):
504                         info.si_code = BUS_ADRALN;
505                         sig = SIGBUS;
506                         verbose_printk(KERN_NOTICE HWC_x2(KERN_NOTICE));
507                         break;
508                 /* External Memory Addressing Error */
509                 case (SEQSTAT_HWERRCAUSE_EXTERN_ADDR):
510                         info.si_code = BUS_ADRERR;
511                         sig = SIGBUS;
512                         verbose_printk(KERN_NOTICE HWC_x3(KERN_NOTICE));
513                         break;
514                 /* Performance Monitor Overflow */
515                 case (SEQSTAT_HWERRCAUSE_PERF_FLOW):
516                         verbose_printk(KERN_NOTICE HWC_x12(KERN_NOTICE));
517                         break;
518                 /* RAISE 5 instruction */
519                 case (SEQSTAT_HWERRCAUSE_RAISE_5):
520                         printk(KERN_NOTICE HWC_x18(KERN_NOTICE));
521                         break;
522                 default:        /* Reserved */
523                         printk(KERN_NOTICE HWC_default(KERN_NOTICE));
524                         break;
525                 }
526                 CHK_DEBUGGER_TRAP_MAYBE();
527                 break;
528         /*
529          * We should be handling all known exception types above,
530          * if we get here we hit a reserved one, so panic
531          */
532         default:
533                 oops_in_progress = 1;
534                 info.si_code = ILL_ILLPARAOP;
535                 sig = SIGILL;
536                 verbose_printk(KERN_EMERG "Caught Unhandled Exception, code = %08lx\n",
537                         (fp->seqstat & SEQSTAT_EXCAUSE));
538                 CHK_DEBUGGER_TRAP_MAYBE();
539                 break;
540         }
541
542         BUG_ON(sig == 0);
543
544         if (sig != SIGTRAP) {
545                 dump_bfin_process(fp);
546                 dump_bfin_mem(fp);
547                 show_regs(fp);
548
549                 /* Print out the trace buffer if it makes sense */
550 #ifndef CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE
551                 if (trapnr == VEC_CPLB_I_M || trapnr == VEC_CPLB_M)
552                         verbose_printk(KERN_NOTICE "No trace since you do not have "
553                                 "CONFIG_DEBUG_BFIN_NO_KERN_HWTRACE enabled\n"
554                                 KERN_NOTICE "\n");
555                 else
556 #endif
557                         dump_bfin_trace_buffer();
558
559                 if (oops_in_progress) {
560                         /* Dump the current kernel stack */
561                         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "Kernel Stack\n");
562                         show_stack(current, NULL);
563                         print_modules();
564 #ifndef CONFIG_ACCESS_CHECK
565                         verbose_printk(KERN_EMERG "Please turn on "
566                                "CONFIG_ACCESS_CHECK\n");
567 #endif
568                         panic("Kernel exception");
569                 } else {
570 #ifdef CONFIG_DEBUG_VERBOSE
571                         unsigned long *stack;
572                         /* Dump the user space stack */
573                         stack = (unsigned long *)rdusp();
574                         verbose_printk(KERN_NOTICE "Userspace Stack\n");
575                         show_stack(NULL, stack);
576 #endif
577                 }
578         }
579
580 #ifdef CONFIG_IPIPE
581         if (!ipipe_trap_notify(fp->seqstat & 0x3f, fp))
582 #endif
583         {
584                 info.si_signo = sig;
585                 info.si_errno = 0;
586                 info.si_addr = (void __user *)fp->pc;
587                 force_sig_info(sig, &info, current);
588         }
589
590         trace_buffer_restore(j);
591         return;
592 }
593
594 /* Typical exception handling routines  */
595
596 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
597
598 /*
599  * Similar to get_user, do some address checking, then dereference
600  * Return true on sucess, false on bad address
601  */
602 static bool get_instruction(unsigned short *val, unsigned short *address)
603 {
604
605         unsigned long addr;
606
607         addr = (unsigned long)address;
608
609         /* Check for odd addresses */
610         if (addr & 0x1)
611                 return false;
612
613         /* Check that things do not wrap around */
614         if (addr > (addr + 2))
615                 return false;
616
617         /*
618          * Since we are in exception context, we need to do a little address checking
619          * We need to make sure we are only accessing valid memory, and
620          * we don't read something in the async space that can hang forever
621          */
622         if ((addr >= FIXED_CODE_START && (addr + 2) <= physical_mem_end) ||
623 #if L2_LENGTH != 0
624             (addr >= L2_START && (addr + 2) <= (L2_START + L2_LENGTH)) ||
625 #endif
626             (addr >= BOOT_ROM_START && (addr + 2) <= (BOOT_ROM_START + BOOT_ROM_LENGTH)) ||
627 #if L1_DATA_A_LENGTH != 0
628             (addr >= L1_DATA_A_START && (addr + 2) <= (L1_DATA_A_START + L1_DATA_A_LENGTH)) ||
629 #endif
630 #if L1_DATA_B_LENGTH != 0
631             (addr >= L1_DATA_B_START && (addr + 2) <= (L1_DATA_B_START + L1_DATA_B_LENGTH)) ||
632 #endif
633             (addr >= L1_SCRATCH_START && (addr + 2) <= (L1_SCRATCH_START + L1_SCRATCH_LENGTH)) ||
634             (!(bfin_read_EBIU_AMBCTL0() & B0RDYEN) &&
635                addr >= ASYNC_BANK0_BASE && (addr + 2) <= (ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)) ||
636             (!(bfin_read_EBIU_AMBCTL0() & B1RDYEN) &&
637                addr >= ASYNC_BANK1_BASE && (addr + 2) <= (ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)) ||
638             (!(bfin_read_EBIU_AMBCTL1() & B2RDYEN) &&
639                addr >= ASYNC_BANK2_BASE && (addr + 2) <= (ASYNC_BANK2_BASE + ASYNC_BANK1_SIZE)) ||
640             (!(bfin_read_EBIU_AMBCTL1() & B3RDYEN) &&
641               addr >= ASYNC_BANK3_BASE && (addr + 2) <= (ASYNC_BANK3_BASE + ASYNC_BANK1_SIZE))) {
642                 *val = *address;
643                 return true;
644         }
645
646 #if L1_CODE_LENGTH != 0
647         if (addr >= L1_CODE_START && (addr + 2) <= (L1_CODE_START + L1_CODE_LENGTH)) {
648                 isram_memcpy(val, address, 2);
649                 return true;
650         }
651 #endif
652
653
654         return false;
655 }
656
657 /*
658  * decode the instruction if we are printing out the trace, as it
659  * makes things easier to follow, without running it through objdump
660  * These are the normal instructions which cause change of flow, which
661  * would be at the source of the trace buffer
662  */
663 #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
664 static void decode_instruction(unsigned short *address)
665 {
666         unsigned short opcode;
667
668         if (get_instruction(&opcode, address)) {
669                 if (opcode == 0x0010)
670                         verbose_printk("RTS");
671                 else if (opcode == 0x0011)
672                         verbose_printk("RTI");
673                 else if (opcode == 0x0012)
674                         verbose_printk("RTX");
675                 else if (opcode >= 0x0050 && opcode <= 0x0057)
676                         verbose_printk("JUMP (P%i)", opcode & 7);
677                 else if (opcode >= 0x0060 && opcode <= 0x0067)
678                         verbose_printk("CALL (P%i)", opcode & 7);
679                 else if (opcode >= 0x0070 && opcode <= 0x0077)
680                         verbose_printk("CALL (PC+P%i)", opcode & 7);
681                 else if (opcode >= 0x0080 && opcode <= 0x0087)
682                         verbose_printk("JUMP (PC+P%i)", opcode & 7);
683                 else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF))
684                         verbose_printk("IF !CC JUMP");
685                 else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff))
686                         verbose_printk("IF CC JUMP");
687                 else if (opcode >= 0x2000 && opcode <= 0x2fff)
688                         verbose_printk("JUMP.S");
689                 else if (opcode >= 0xe080 && opcode <= 0xe0ff)
690                         verbose_printk("LSETUP");
691                 else if (opcode >= 0xe200 && opcode <= 0xe2ff)
692                         verbose_printk("JUMP.L");
693                 else if (opcode >= 0xe300 && opcode <= 0xe3ff)
694                         verbose_printk("CALL pcrel");
695                 else
696                         verbose_printk("0x%04x", opcode);
697         }
698
699 }
700 #endif
701
702 void dump_bfin_trace_buffer(void)
703 {
704 #ifdef CONFIG_DEBUG_VERBOSE
705 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
706         int tflags, i = 0;
707         char buf[150];
708         unsigned short *addr;
709 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
710         int j, index;
711 #endif
712
713         trace_buffer_save(tflags);
714
715         printk(KERN_NOTICE "Hardware Trace:\n");
716
717 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
718         printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n");
719 #endif
720
721         if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
722                 for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
723                         decode_address(buf, (unsigned long)bfin_read_TBUF());
724                         printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
725                         addr = (unsigned short *)bfin_read_TBUF();
726                         decode_address(buf, (unsigned long)addr);
727                         printk(KERN_NOTICE "     Source : %s ", buf);
728                         decode_instruction(addr);
729                         printk("\n");
730                 }
731         }
732
733 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
734         if (trace_buff_offset)
735                 index = trace_buff_offset / 4;
736         else
737                 index = EXPAND_LEN;
738
739         j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
740         while (j) {
741                 decode_address(buf, software_trace_buff[index]);
742                 printk(KERN_NOTICE "%4i Target : %s\n", i, buf);
743                 index -= 1;
744                 if (index < 0 )
745                         index = EXPAND_LEN;
746                 decode_address(buf, software_trace_buff[index]);
747                 printk(KERN_NOTICE "     Source : %s ", buf);
748                 decode_instruction((unsigned short *)software_trace_buff[index]);
749                 printk("\n");
750                 index -= 1;
751                 if (index < 0)
752                         index = EXPAND_LEN;
753                 j--;
754                 i++;
755         }
756 #endif
757
758         trace_buffer_restore(tflags);
759 #endif
760 #endif
761 }
762 EXPORT_SYMBOL(dump_bfin_trace_buffer);
763
764 /*
765  * Checks to see if the address pointed to is either a
766  * 16-bit CALL instruction, or a 32-bit CALL instruction
767  */
768 static bool is_bfin_call(unsigned short *addr)
769 {
770         unsigned short opcode = 0, *ins_addr;
771         ins_addr = (unsigned short *)addr;
772
773         if (!get_instruction(&opcode, ins_addr))
774                 return false;
775
776         if ((opcode >= 0x0060 && opcode <= 0x0067) ||
777             (opcode >= 0x0070 && opcode <= 0x0077))
778                 return true;
779
780         ins_addr--;
781         if (!get_instruction(&opcode, ins_addr))
782                 return false;
783
784         if (opcode >= 0xE300 && opcode <= 0xE3FF)
785                 return true;
786
787         return false;
788
789 }
790
791 void show_stack(struct task_struct *task, unsigned long *stack)
792 {
793 #ifdef CONFIG_PRINTK
794         unsigned int *addr, *endstack, *fp = 0, *frame;
795         unsigned short *ins_addr;
796         char buf[150];
797         unsigned int i, j, ret_addr, frame_no = 0;
798
799         /*
800          * If we have been passed a specific stack, use that one otherwise
801          *    if we have been passed a task structure, use that, otherwise
802          *    use the stack of where the variable "stack" exists
803          */
804
805         if (stack == NULL) {
806                 if (task) {
807                         /* We know this is a kernel stack, so this is the start/end */
808                         stack = (unsigned long *)task->thread.ksp;
809                         endstack = (unsigned int *)(((unsigned int)(stack) & ~(THREAD_SIZE - 1)) + THREAD_SIZE);
810                 } else {
811                         /* print out the existing stack info */
812                         stack = (unsigned long *)&stack;
813                         endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
814                 }
815         } else
816                 endstack = (unsigned int *)PAGE_ALIGN((unsigned int)stack);
817
818         printk(KERN_NOTICE "Stack info:\n");
819         decode_address(buf, (unsigned int)stack);
820         printk(KERN_NOTICE " SP: [0x%p] %s\n", stack, buf);
821
822         addr = (unsigned int *)((unsigned int)stack & ~0x3F);
823
824         /* First thing is to look for a frame pointer */
825         for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
826                 addr < endstack; addr++, i++) {
827                 if (*addr & 0x1)
828                         continue;
829                 ins_addr = (unsigned short *)*addr;
830                 ins_addr--;
831                 if (is_bfin_call(ins_addr))
832                         fp = addr - 1;
833
834                 if (fp) {
835                         /* Let's check to see if it is a frame pointer */
836                         while (fp >= (addr - 1) && fp < endstack && fp)
837                                 fp = (unsigned int *)*fp;
838                         if (fp == 0 || fp == endstack) {
839                                 fp = addr - 1;
840                                 break;
841                         }
842                         fp = 0;
843                 }
844         }
845         if (fp) {
846                 frame = fp;
847                 printk(KERN_NOTICE " FP: (0x%p)\n", fp);
848         } else
849                 frame = 0;
850
851         /*
852          * Now that we think we know where things are, we
853          * walk the stack again, this time printing things out
854          * incase there is no frame pointer, we still look for
855          * valid return addresses
856          */
857
858         /* First time print out data, next time, print out symbols */
859         for (j = 0; j <= 1; j++) {
860                 if (j)
861                         printk(KERN_NOTICE "Return addresses in stack:\n");
862                 else
863                         printk(KERN_NOTICE " Memory from 0x%08lx to %p", ((long unsigned int)stack & ~0xF), endstack);
864
865                 fp = frame;
866                 frame_no = 0;
867
868                 for (addr = (unsigned int *)((unsigned int)stack & ~0xF), i = 0;
869                      addr <= endstack; addr++, i++) {
870
871                         ret_addr = 0;
872                         if (!j && i % 8 == 0)
873                                 printk("\n" KERN_NOTICE "%p:",addr);
874
875                         /* if it is an odd address, or zero, just skip it */
876                         if (*addr & 0x1 || !*addr)
877                                 goto print;
878
879                         ins_addr = (unsigned short *)*addr;
880
881                         /* Go back one instruction, and see if it is a CALL */
882                         ins_addr--;
883                         ret_addr = is_bfin_call(ins_addr);
884  print:
885                         if (!j && stack == (unsigned long *)addr)
886                                 printk("[%08x]", *addr);
887                         else if (ret_addr)
888                                 if (j) {
889                                         decode_address(buf, (unsigned int)*addr);
890                                         if (frame == addr) {
891                                                 printk(KERN_NOTICE "   frame %2i : %s\n", frame_no, buf);
892                                                 continue;
893                                         }
894                                         printk(KERN_NOTICE "    address : %s\n", buf);
895                                 } else
896                                         printk("<%08x>", *addr);
897                         else if (fp == addr) {
898                                 if (j)
899                                         frame = addr+1;
900                                 else
901                                         printk("(%08x)", *addr);
902
903                                 fp = (unsigned int *)*addr;
904                                 frame_no++;
905
906                         } else if (!j)
907                                 printk(" %08x ", *addr);
908                 }
909                 if (!j)
910                         printk("\n");
911         }
912 #endif
913 }
914
915 void dump_stack(void)
916 {
917         unsigned long stack;
918 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
919         int tflags;
920 #endif
921         trace_buffer_save(tflags);
922         dump_bfin_trace_buffer();
923         show_stack(current, &stack);
924         trace_buffer_restore(tflags);
925 }
926 EXPORT_SYMBOL(dump_stack);
927
928 void dump_bfin_process(struct pt_regs *fp)
929 {
930 #ifdef CONFIG_DEBUG_VERBOSE
931         /* We should be able to look at fp->ipend, but we don't push it on the
932          * stack all the time, so do this until we fix that */
933         unsigned int context = bfin_read_IPEND();
934
935         if (oops_in_progress)
936                 verbose_printk(KERN_EMERG "Kernel OOPS in progress\n");
937
938         if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
939                 verbose_printk(KERN_NOTICE "HW Error context\n");
940         else if (context & 0x0020)
941                 verbose_printk(KERN_NOTICE "Deferred Exception context\n");
942         else if (context & 0x3FC0)
943                 verbose_printk(KERN_NOTICE "Interrupt context\n");
944         else if (context & 0x4000)
945                 verbose_printk(KERN_NOTICE "Deferred Interrupt context\n");
946         else if (context & 0x8000)
947                 verbose_printk(KERN_NOTICE "Kernel process context\n");
948
949         /* Because we are crashing, and pointers could be bad, we check things
950          * pretty closely before we use them
951          */
952         if ((unsigned long)current >= FIXED_CODE_START &&
953             !((unsigned long)current & 0x3) && current->pid) {
954                 verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n");
955                 if (current->comm >= (char *)FIXED_CODE_START)
956                         verbose_printk(KERN_NOTICE "COMM=%s PID=%d\n",
957                                 current->comm, current->pid);
958                 else
959                         verbose_printk(KERN_NOTICE "COMM= invalid\n");
960
961                 printk(KERN_NOTICE "CPU = %d\n", current_thread_info()->cpu);
962                 if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START)
963                         verbose_printk(KERN_NOTICE  "TEXT = 0x%p-0x%p        DATA = 0x%p-0x%p\n"
964                                 KERN_NOTICE " BSS = 0x%p-0x%p  USER-STACK = 0x%p\n"
965                                 KERN_NOTICE "\n",
966                                 (void *)current->mm->start_code,
967                                 (void *)current->mm->end_code,
968                                 (void *)current->mm->start_data,
969                                 (void *)current->mm->end_data,
970                                 (void *)current->mm->end_data,
971                                 (void *)current->mm->brk,
972                                 (void *)current->mm->start_stack);
973                 else
974                         verbose_printk(KERN_NOTICE "invalid mm\n");
975         } else
976                 verbose_printk(KERN_NOTICE "\n" KERN_NOTICE
977                      "No Valid process in current context\n");
978 #endif
979 }
980
981 void dump_bfin_mem(struct pt_regs *fp)
982 {
983 #ifdef CONFIG_DEBUG_VERBOSE
984         unsigned short *addr, *erraddr, val = 0, err = 0;
985         char sti = 0, buf[6];
986
987         erraddr = (void *)fp->pc;
988
989         verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr);
990
991         for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
992              addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
993              addr++) {
994                 if (!((unsigned long)addr & 0xF))
995                         verbose_printk("\n" KERN_NOTICE "0x%p: ", addr);
996
997                 if (!get_instruction(&val, addr)) {
998                                 val = 0;
999                                 sprintf(buf, "????");
1000                 } else
1001                         sprintf(buf, "%04x", val);
1002
1003                 if (addr == erraddr) {
1004                         verbose_printk("[%s]", buf);
1005                         err = val;
1006                 } else
1007                         verbose_printk(" %s ", buf);
1008
1009                 /* Do any previous instructions turn on interrupts? */
1010                 if (addr <= erraddr &&                          /* in the past */
1011                     ((val >= 0x0040 && val <= 0x0047) ||        /* STI instruction */
1012                       val == 0x017b))                           /* [SP++] = RETI */
1013                         sti = 1;
1014         }
1015
1016         verbose_printk("\n");
1017
1018         /* Hardware error interrupts can be deferred */
1019         if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
1020             oops_in_progress)){
1021                 verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n");
1022 #ifndef CONFIG_DEBUG_HWERR
1023                 verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n"
1024                         KERN_NOTICE "You should enable CONFIG_DEBUG_HWERR to get a"
1025                          " better idea where it came from\n");
1026 #else
1027                 /* If we are handling only one peripheral interrupt
1028                  * and current mm and pid are valid, and the last error
1029                  * was in that user space process's text area
1030                  * print it out - because that is where the problem exists
1031                  */
1032                 if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
1033                      (current->pid && current->mm)) {
1034                         /* And the last RETI points to the current userspace context */
1035                         if ((fp + 1)->pc >= current->mm->start_code &&
1036                             (fp + 1)->pc <= current->mm->end_code) {
1037                                 verbose_printk(KERN_NOTICE "It might be better to look around here : \n");
1038                                 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1039                                 show_regs(fp + 1);
1040                                 verbose_printk(KERN_NOTICE "-------------------------------------------\n");
1041                         }
1042                 }
1043 #endif
1044         }
1045 #endif
1046 }
1047
1048 void show_regs(struct pt_regs *fp)
1049 {
1050 #ifdef CONFIG_DEBUG_VERBOSE
1051         char buf [150];
1052         struct irqaction *action;
1053         unsigned int i;
1054         unsigned long flags;
1055         unsigned int cpu = smp_processor_id();
1056
1057         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "SEQUENCER STATUS:\t\t%s\n", print_tainted());
1058         verbose_printk(KERN_NOTICE " SEQSTAT: %08lx  IPEND: %04lx  SYSCFG: %04lx\n",
1059                 (long)fp->seqstat, fp->ipend, fp->syscfg);
1060         if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
1061                 verbose_printk(KERN_NOTICE "  HWERRCAUSE: 0x%lx\n",
1062                         (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
1063 #ifdef EBIU_ERRMST
1064                 /* If the error was from the EBIU, print it out */
1065                 if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
1066                         verbose_printk(KERN_NOTICE "  EBIU Error Reason  : 0x%04x\n",
1067                                 bfin_read_EBIU_ERRMST());
1068                         verbose_printk(KERN_NOTICE "  EBIU Error Address : 0x%08x\n",
1069                                 bfin_read_EBIU_ERRADD());
1070                 }
1071 #endif
1072         }
1073         verbose_printk(KERN_NOTICE "  EXCAUSE   : 0x%lx\n",
1074                 fp->seqstat & SEQSTAT_EXCAUSE);
1075         for (i = 6; i <= 15 ; i++) {
1076                 if (fp->ipend & (1 << i)) {
1077                         decode_address(buf, bfin_read32(EVT0 + 4*i));
1078                         verbose_printk(KERN_NOTICE "  physical IVG%i asserted : %s\n", i, buf);
1079                 }
1080         }
1081
1082         /* if no interrupts are going off, don't print this out */
1083         if (fp->ipend & ~0x3F) {
1084                 for (i = 0; i < (NR_IRQS - 1); i++) {
1085                         spin_lock_irqsave(&irq_desc[i].lock, flags);
1086                         action = irq_desc[i].action;
1087                         if (!action)
1088                                 goto unlock;
1089
1090                         decode_address(buf, (unsigned int)action->handler);
1091                         verbose_printk(KERN_NOTICE "  logical irq %3d mapped  : %s", i, buf);
1092                         for (action = action->next; action; action = action->next) {
1093                                 decode_address(buf, (unsigned int)action->handler);
1094                                 verbose_printk(", %s", buf);
1095                         }
1096                         verbose_printk("\n");
1097 unlock:
1098                         spin_unlock_irqrestore(&irq_desc[i].lock, flags);
1099                 }
1100         }
1101
1102         decode_address(buf, fp->rete);
1103         verbose_printk(KERN_NOTICE " RETE: %s\n", buf);
1104         decode_address(buf, fp->retn);
1105         verbose_printk(KERN_NOTICE " RETN: %s\n", buf);
1106         decode_address(buf, fp->retx);
1107         verbose_printk(KERN_NOTICE " RETX: %s\n", buf);
1108         decode_address(buf, fp->rets);
1109         verbose_printk(KERN_NOTICE " RETS: %s\n", buf);
1110         decode_address(buf, fp->pc);
1111         verbose_printk(KERN_NOTICE " PC  : %s\n", buf);
1112
1113         if (((long)fp->seqstat &  SEQSTAT_EXCAUSE) &&
1114             (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
1115                 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
1116                 verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf);
1117                 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
1118                 verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf);
1119         }
1120
1121         verbose_printk(KERN_NOTICE "\n" KERN_NOTICE "PROCESSOR STATE:\n");
1122         verbose_printk(KERN_NOTICE " R0 : %08lx    R1 : %08lx    R2 : %08lx    R3 : %08lx\n",
1123                 fp->r0, fp->r1, fp->r2, fp->r3);
1124         verbose_printk(KERN_NOTICE " R4 : %08lx    R5 : %08lx    R6 : %08lx    R7 : %08lx\n",
1125                 fp->r4, fp->r5, fp->r6, fp->r7);
1126         verbose_printk(KERN_NOTICE " P0 : %08lx    P1 : %08lx    P2 : %08lx    P3 : %08lx\n",
1127                 fp->p0, fp->p1, fp->p2, fp->p3);
1128         verbose_printk(KERN_NOTICE " P4 : %08lx    P5 : %08lx    FP : %08lx    SP : %08lx\n",
1129                 fp->p4, fp->p5, fp->fp, (long)fp);
1130         verbose_printk(KERN_NOTICE " LB0: %08lx    LT0: %08lx    LC0: %08lx\n",
1131                 fp->lb0, fp->lt0, fp->lc0);
1132         verbose_printk(KERN_NOTICE " LB1: %08lx    LT1: %08lx    LC1: %08lx\n",
1133                 fp->lb1, fp->lt1, fp->lc1);
1134         verbose_printk(KERN_NOTICE " B0 : %08lx    L0 : %08lx    M0 : %08lx    I0 : %08lx\n",
1135                 fp->b0, fp->l0, fp->m0, fp->i0);
1136         verbose_printk(KERN_NOTICE " B1 : %08lx    L1 : %08lx    M1 : %08lx    I1 : %08lx\n",
1137                 fp->b1, fp->l1, fp->m1, fp->i1);
1138         verbose_printk(KERN_NOTICE " B2 : %08lx    L2 : %08lx    M2 : %08lx    I2 : %08lx\n",
1139                 fp->b2, fp->l2, fp->m2, fp->i2);
1140         verbose_printk(KERN_NOTICE " B3 : %08lx    L3 : %08lx    M3 : %08lx    I3 : %08lx\n",
1141                 fp->b3, fp->l3, fp->m3, fp->i3);
1142         verbose_printk(KERN_NOTICE "A0.w: %08lx   A0.x: %08lx   A1.w: %08lx   A1.x: %08lx\n",
1143                 fp->a0w, fp->a0x, fp->a1w, fp->a1x);
1144
1145         verbose_printk(KERN_NOTICE "USP : %08lx  ASTAT: %08lx\n",
1146                 rdusp(), fp->astat);
1147
1148         verbose_printk(KERN_NOTICE "\n");
1149 #endif
1150 }
1151
1152 #ifdef CONFIG_SYS_BFIN_SPINLOCK_L1
1153 asmlinkage int sys_bfin_spinlock(int *spinlock)__attribute__((l1_text));
1154 #endif
1155
1156 static DEFINE_SPINLOCK(bfin_spinlock_lock);
1157
1158 asmlinkage int sys_bfin_spinlock(int *p)
1159 {
1160         int ret, tmp = 0;
1161
1162         spin_lock(&bfin_spinlock_lock); /* This would also hold kernel preemption. */
1163         ret = get_user(tmp, p);
1164         if (likely(ret == 0)) {
1165                 if (unlikely(tmp))
1166                         ret = 1;
1167                 else
1168                         put_user(1, p);
1169         }
1170         spin_unlock(&bfin_spinlock_lock);
1171         return ret;
1172 }
1173
1174 int bfin_request_exception(unsigned int exception, void (*handler)(void))
1175 {
1176         void (*curr_handler)(void);
1177
1178         if (exception > 0x3F)
1179                 return -EINVAL;
1180
1181         curr_handler = ex_table[exception];
1182
1183         if (curr_handler != ex_replaceable)
1184                 return -EBUSY;
1185
1186         ex_table[exception] = handler;
1187
1188         return 0;
1189 }
1190 EXPORT_SYMBOL(bfin_request_exception);
1191
1192 int bfin_free_exception(unsigned int exception, void (*handler)(void))
1193 {
1194         void (*curr_handler)(void);
1195
1196         if (exception > 0x3F)
1197                 return -EINVAL;
1198
1199         curr_handler = ex_table[exception];
1200
1201         if (curr_handler != handler)
1202                 return -EBUSY;
1203
1204         ex_table[exception] = ex_replaceable;
1205
1206         return 0;
1207 }
1208 EXPORT_SYMBOL(bfin_free_exception);
1209
1210 void panic_cplb_error(int cplb_panic, struct pt_regs *fp)
1211 {
1212         switch (cplb_panic) {
1213         case CPLB_NO_UNLOCKED:
1214                 printk(KERN_EMERG "All CPLBs are locked\n");
1215                 break;
1216         case CPLB_PROT_VIOL:
1217                 return;
1218         case CPLB_NO_ADDR_MATCH:
1219                 return;
1220         case CPLB_UNKNOWN_ERR:
1221                 printk(KERN_EMERG "Unknown CPLB Exception\n");
1222                 break;
1223         }
1224
1225         oops_in_progress = 1;
1226
1227         dump_bfin_process(fp);
1228         dump_bfin_mem(fp);
1229         show_regs(fp);
1230         dump_stack();
1231         panic("Unrecoverable event\n");
1232 }