]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/mm/consistent.c
0513ed1b2fcf8334ffdcf12a78277008e23e07c8
[linux-2.6-omap-h63xx.git] / arch / arm / mm / consistent.c
1 /*
2  *  linux/arch/arm/mm/consistent.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23
24 #define CONSISTENT_BASE (0xffc00000)
25 #define CONSISTENT_END  (0xffe00000)
26 #define CONSISTENT_OFFSET(x)    (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
27
28 /*
29  * This is the page table (2MB) covering uncached, DMA consistent allocations
30  */
31 static pte_t *consistent_pte;
32 static DEFINE_SPINLOCK(consistent_lock);
33
34 /*
35  * VM region handling support.
36  *
37  * This should become something generic, handling VM region allocations for
38  * vmalloc and similar (ioremap, module space, etc).
39  *
40  * I envisage vmalloc()'s supporting vm_struct becoming:
41  *
42  *  struct vm_struct {
43  *    struct vm_region  region;
44  *    unsigned long     flags;
45  *    struct page       **pages;
46  *    unsigned int      nr_pages;
47  *    unsigned long     phys_addr;
48  *  };
49  *
50  * get_vm_area() would then call vm_region_alloc with an appropriate
51  * struct vm_region head (eg):
52  *
53  *  struct vm_region vmalloc_head = {
54  *      .vm_list        = LIST_HEAD_INIT(vmalloc_head.vm_list),
55  *      .vm_start       = VMALLOC_START,
56  *      .vm_end         = VMALLOC_END,
57  *  };
58  *
59  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
60  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
61  * would have to initialise this each time prior to calling vm_region_alloc().
62  */
63 struct vm_region {
64         struct list_head        vm_list;
65         unsigned long           vm_start;
66         unsigned long           vm_end;
67         struct page             *vm_pages;
68         int                     vm_active;
69 };
70
71 static struct vm_region consistent_head = {
72         .vm_list        = LIST_HEAD_INIT(consistent_head.vm_list),
73         .vm_start       = CONSISTENT_BASE,
74         .vm_end         = CONSISTENT_END,
75 };
76
77 static struct vm_region *
78 vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp)
79 {
80         unsigned long addr = head->vm_start, end = head->vm_end - size;
81         unsigned long flags;
82         struct vm_region *c, *new;
83
84         new = kmalloc(sizeof(struct vm_region), gfp);
85         if (!new)
86                 goto out;
87
88         spin_lock_irqsave(&consistent_lock, flags);
89
90         list_for_each_entry(c, &head->vm_list, vm_list) {
91                 if ((addr + size) < addr)
92                         goto nospc;
93                 if ((addr + size) <= c->vm_start)
94                         goto found;
95                 addr = c->vm_end;
96                 if (addr > end)
97                         goto nospc;
98         }
99
100  found:
101         /*
102          * Insert this entry _before_ the one we found.
103          */
104         list_add_tail(&new->vm_list, &c->vm_list);
105         new->vm_start = addr;
106         new->vm_end = addr + size;
107         new->vm_active = 1;
108
109         spin_unlock_irqrestore(&consistent_lock, flags);
110         return new;
111
112  nospc:
113         spin_unlock_irqrestore(&consistent_lock, flags);
114         kfree(new);
115  out:
116         return NULL;
117 }
118
119 static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr)
120 {
121         struct vm_region *c;
122         
123         list_for_each_entry(c, &head->vm_list, vm_list) {
124                 if (c->vm_active && c->vm_start == addr)
125                         goto out;
126         }
127         c = NULL;
128  out:
129         return c;
130 }
131
132 #ifdef CONFIG_HUGETLB_PAGE
133 #error ARM Coherent DMA allocator does not (yet) support huge TLB
134 #endif
135
136 static void *
137 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
138             pgprot_t prot)
139 {
140         struct page *page;
141         struct vm_region *c;
142         unsigned long order;
143         u64 mask = ISA_DMA_THRESHOLD, limit;
144
145         if (!consistent_pte) {
146                 printk(KERN_ERR "%s: not initialised\n", __func__);
147                 dump_stack();
148                 return NULL;
149         }
150
151         if (dev) {
152                 mask = dev->coherent_dma_mask;
153
154                 /*
155                  * Sanity check the DMA mask - it must be non-zero, and
156                  * must be able to be satisfied by a DMA allocation.
157                  */
158                 if (mask == 0) {
159                         dev_warn(dev, "coherent DMA mask is unset\n");
160                         goto no_page;
161                 }
162
163                 if ((~mask) & ISA_DMA_THRESHOLD) {
164                         dev_warn(dev, "coherent DMA mask %#llx is smaller "
165                                  "than system GFP_DMA mask %#llx\n",
166                                  mask, (unsigned long long)ISA_DMA_THRESHOLD);
167                         goto no_page;
168                 }
169         }
170
171         /*
172          * Sanity check the allocation size.
173          */
174         size = PAGE_ALIGN(size);
175         limit = (mask + 1) & ~mask;
176         if ((limit && size >= limit) ||
177             size >= (CONSISTENT_END - CONSISTENT_BASE)) {
178                 printk(KERN_WARNING "coherent allocation too big "
179                        "(requested %#x mask %#llx)\n", size, mask);
180                 goto no_page;
181         }
182
183         order = get_order(size);
184
185         if (mask != 0xffffffff)
186                 gfp |= GFP_DMA;
187
188         page = alloc_pages(gfp, order);
189         if (!page)
190                 goto no_page;
191
192         /*
193          * Invalidate any data that might be lurking in the
194          * kernel direct-mapped region for device DMA.
195          */
196         {
197                 unsigned long kaddr = (unsigned long)page_address(page);
198                 memset(page_address(page), 0, size);
199                 dmac_flush_range(kaddr, kaddr + size);
200         }
201
202         /*
203          * Allocate a virtual address in the consistent mapping region.
204          */
205         c = vm_region_alloc(&consistent_head, size,
206                             gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
207         if (c) {
208                 pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
209                 struct page *end = page + (1 << order);
210
211                 c->vm_pages = page;
212
213                 /*
214                  * Set the "dma handle"
215                  */
216                 *handle = page_to_dma(dev, page);
217
218                 do {
219                         BUG_ON(!pte_none(*pte));
220
221                         set_page_count(page, 1);
222                         /*
223                          * x86 does not mark the pages reserved...
224                          */
225                         SetPageReserved(page);
226                         set_pte(pte, mk_pte(page, prot));
227                         page++;
228                         pte++;
229                 } while (size -= PAGE_SIZE);
230
231                 /*
232                  * Free the otherwise unused pages.
233                  */
234                 while (page < end) {
235                         set_page_count(page, 1);
236                         __free_page(page);
237                         page++;
238                 }
239
240                 return (void *)c->vm_start;
241         }
242
243         if (page)
244                 __free_pages(page, order);
245  no_page:
246         *handle = ~0;
247         return NULL;
248 }
249
250 /*
251  * Allocate DMA-coherent memory space and return both the kernel remapped
252  * virtual and bus address for that space.
253  */
254 void *
255 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
256 {
257         return __dma_alloc(dev, size, handle, gfp,
258                            pgprot_noncached(pgprot_kernel));
259 }
260 EXPORT_SYMBOL(dma_alloc_coherent);
261
262 /*
263  * Allocate a writecombining region, in much the same way as
264  * dma_alloc_coherent above.
265  */
266 void *
267 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
268 {
269         return __dma_alloc(dev, size, handle, gfp,
270                            pgprot_writecombine(pgprot_kernel));
271 }
272 EXPORT_SYMBOL(dma_alloc_writecombine);
273
274 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
275                     void *cpu_addr, dma_addr_t dma_addr, size_t size)
276 {
277         unsigned long flags, user_size, kern_size;
278         struct vm_region *c;
279         int ret = -ENXIO;
280
281         user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
282
283         spin_lock_irqsave(&consistent_lock, flags);
284         c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
285         spin_unlock_irqrestore(&consistent_lock, flags);
286
287         if (c) {
288                 unsigned long off = vma->vm_pgoff;
289
290                 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
291
292                 if (off < kern_size &&
293                     user_size <= (kern_size - off)) {
294                         vma->vm_flags |= VM_RESERVED;
295                         ret = remap_pfn_range(vma, vma->vm_start,
296                                               page_to_pfn(c->vm_pages) + off,
297                                               user_size << PAGE_SHIFT,
298                                               vma->vm_page_prot);
299                 }
300         }
301
302         return ret;
303 }
304
305 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
306                       void *cpu_addr, dma_addr_t dma_addr, size_t size)
307 {
308         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
309         return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
310 }
311 EXPORT_SYMBOL(dma_mmap_coherent);
312
313 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
314                           void *cpu_addr, dma_addr_t dma_addr, size_t size)
315 {
316         vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
317         return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
318 }
319 EXPORT_SYMBOL(dma_mmap_writecombine);
320
321 /*
322  * free a page as defined by the above mapping.
323  * Must not be called with IRQs disabled.
324  */
325 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
326 {
327         struct vm_region *c;
328         unsigned long flags, addr;
329         pte_t *ptep;
330
331         WARN_ON(irqs_disabled());
332
333         size = PAGE_ALIGN(size);
334
335         spin_lock_irqsave(&consistent_lock, flags);
336         c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
337         if (!c)
338                 goto no_area;
339
340         c->vm_active = 0;
341         spin_unlock_irqrestore(&consistent_lock, flags);
342
343         if ((c->vm_end - c->vm_start) != size) {
344                 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
345                        __func__, c->vm_end - c->vm_start, size);
346                 dump_stack();
347                 size = c->vm_end - c->vm_start;
348         }
349
350         ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
351         addr = c->vm_start;
352         do {
353                 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
354                 unsigned long pfn;
355
356                 ptep++;
357                 addr += PAGE_SIZE;
358
359                 if (!pte_none(pte) && pte_present(pte)) {
360                         pfn = pte_pfn(pte);
361
362                         if (pfn_valid(pfn)) {
363                                 struct page *page = pfn_to_page(pfn);
364
365                                 /*
366                                  * x86 does not mark the pages reserved...
367                                  */
368                                 ClearPageReserved(page);
369
370                                 __free_page(page);
371                                 continue;
372                         }
373                 }
374
375                 printk(KERN_CRIT "%s: bad page in kernel page table\n",
376                        __func__);
377         } while (size -= PAGE_SIZE);
378
379         flush_tlb_kernel_range(c->vm_start, c->vm_end);
380
381         spin_lock_irqsave(&consistent_lock, flags);
382         list_del(&c->vm_list);
383         spin_unlock_irqrestore(&consistent_lock, flags);
384
385         kfree(c);
386         return;
387
388  no_area:
389         spin_unlock_irqrestore(&consistent_lock, flags);
390         printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
391                __func__, cpu_addr);
392         dump_stack();
393 }
394 EXPORT_SYMBOL(dma_free_coherent);
395
396 /*
397  * Initialise the consistent memory allocation.
398  */
399 static int __init consistent_init(void)
400 {
401         pgd_t *pgd;
402         pmd_t *pmd;
403         pte_t *pte;
404         int ret = 0;
405
406         do {
407                 pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
408                 pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
409                 if (!pmd) {
410                         printk(KERN_ERR "%s: no pmd tables\n", __func__);
411                         ret = -ENOMEM;
412                         break;
413                 }
414                 WARN_ON(!pmd_none(*pmd));
415
416                 pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
417                 if (!pte) {
418                         printk(KERN_ERR "%s: no pte tables\n", __func__);
419                         ret = -ENOMEM;
420                         break;
421                 }
422
423                 consistent_pte = pte;
424         } while (0);
425
426         return ret;
427 }
428
429 core_initcall(consistent_init);
430
431 /*
432  * Make an area consistent for devices.
433  */
434 void consistent_sync(void *vaddr, size_t size, int direction)
435 {
436         unsigned long start = (unsigned long)vaddr;
437         unsigned long end   = start + size;
438
439         switch (direction) {
440         case DMA_FROM_DEVICE:           /* invalidate only */
441                 dmac_inv_range(start, end);
442                 break;
443         case DMA_TO_DEVICE:             /* writeback only */
444                 dmac_clean_range(start, end);
445                 break;
446         case DMA_BIDIRECTIONAL:         /* writeback and invalidate */
447                 dmac_flush_range(start, end);
448                 break;
449         default:
450                 BUG();
451         }
452 }
453 EXPORT_SYMBOL(consistent_sync);