]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/include/asm/cacheflush.h
Merge branch 'next-s3c64xx-regs' of git://aeryn.fluff.org.uk/bjdooks/linux into devel
[linux-2.6-omap-h63xx.git] / arch / arm / include / asm / cacheflush.h
1 /*
2  *  arch/arm/include/asm/cacheflush.h
3  *
4  *  Copyright (C) 1999-2002 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
12
13 #include <linux/mm.h>
14
15 #include <asm/glue.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18
19 #define CACHE_COLOUR(vaddr)     ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
20
21 /*
22  *      Cache Model
23  *      ===========
24  */
25 #undef _CACHE
26 #undef MULTI_CACHE
27
28 #if defined(CONFIG_CPU_CACHE_V3)
29 # ifdef _CACHE
30 #  define MULTI_CACHE 1
31 # else
32 #  define _CACHE v3
33 # endif
34 #endif
35
36 #if defined(CONFIG_CPU_CACHE_V4)
37 # ifdef _CACHE
38 #  define MULTI_CACHE 1
39 # else
40 #  define _CACHE v4
41 # endif
42 #endif
43
44 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
45     defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
46 # define MULTI_CACHE 1
47 #endif
48
49 #if defined(CONFIG_CPU_ARM926T)
50 # ifdef _CACHE
51 #  define MULTI_CACHE 1
52 # else
53 #  define _CACHE arm926
54 # endif
55 #endif
56
57 #if defined(CONFIG_CPU_ARM940T)
58 # ifdef _CACHE
59 #  define MULTI_CACHE 1
60 # else
61 #  define _CACHE arm940
62 # endif
63 #endif
64
65 #if defined(CONFIG_CPU_ARM946E)
66 # ifdef _CACHE
67 #  define MULTI_CACHE 1
68 # else
69 #  define _CACHE arm946
70 # endif
71 #endif
72
73 #if defined(CONFIG_CPU_CACHE_V4WB)
74 # ifdef _CACHE
75 #  define MULTI_CACHE 1
76 # else
77 #  define _CACHE v4wb
78 # endif
79 #endif
80
81 #if defined(CONFIG_CPU_XSCALE)
82 # ifdef _CACHE
83 #  define MULTI_CACHE 1
84 # else
85 #  define _CACHE xscale
86 # endif
87 #endif
88
89 #if defined(CONFIG_CPU_XSC3)
90 # ifdef _CACHE
91 #  define MULTI_CACHE 1
92 # else
93 #  define _CACHE xsc3
94 # endif
95 #endif
96
97 #if defined(CONFIG_CPU_MOHAWK)
98 # ifdef _CACHE
99 #  define MULTI_CACHE 1
100 # else
101 #  define _CACHE mohawk
102 # endif
103 #endif
104
105 #if defined(CONFIG_CPU_FEROCEON)
106 # define MULTI_CACHE 1
107 #endif
108
109 #if defined(CONFIG_CPU_V6)
110 //# ifdef _CACHE
111 #  define MULTI_CACHE 1
112 //# else
113 //#  define _CACHE v6
114 //# endif
115 #endif
116
117 #if defined(CONFIG_CPU_V7)
118 //# ifdef _CACHE
119 #  define MULTI_CACHE 1
120 //# else
121 //#  define _CACHE v7
122 //# endif
123 #endif
124
125 #if !defined(_CACHE) && !defined(MULTI_CACHE)
126 #error Unknown cache maintainence model
127 #endif
128
129 /*
130  * This flag is used to indicate that the page pointed to by a pte
131  * is dirty and requires cleaning before returning it to the user.
132  */
133 #define PG_dcache_dirty PG_arch_1
134
135 /*
136  *      MM Cache Management
137  *      ===================
138  *
139  *      The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
140  *      implement these methods.
141  *
142  *      Start addresses are inclusive and end addresses are exclusive;
143  *      start addresses should be rounded down, end addresses up.
144  *
145  *      See Documentation/cachetlb.txt for more information.
146  *      Please note that the implementation of these, and the required
147  *      effects are cache-type (VIVT/VIPT/PIPT) specific.
148  *
149  *      flush_cache_kern_all()
150  *
151  *              Unconditionally clean and invalidate the entire cache.
152  *
153  *      flush_cache_user_mm(mm)
154  *
155  *              Clean and invalidate all user space cache entries
156  *              before a change of page tables.
157  *
158  *      flush_cache_user_range(start, end, flags)
159  *
160  *              Clean and invalidate a range of cache entries in the
161  *              specified address space before a change of page tables.
162  *              - start - user start address (inclusive, page aligned)
163  *              - end   - user end address   (exclusive, page aligned)
164  *              - flags - vma->vm_flags field
165  *
166  *      coherent_kern_range(start, end)
167  *
168  *              Ensure coherency between the Icache and the Dcache in the
169  *              region described by start, end.  If you have non-snooping
170  *              Harvard caches, you need to implement this function.
171  *              - start  - virtual start address
172  *              - end    - virtual end address
173  *
174  *      DMA Cache Coherency
175  *      ===================
176  *
177  *      dma_inv_range(start, end)
178  *
179  *              Invalidate (discard) the specified virtual address range.
180  *              May not write back any entries.  If 'start' or 'end'
181  *              are not cache line aligned, those lines must be written
182  *              back.
183  *              - start  - virtual start address
184  *              - end    - virtual end address
185  *
186  *      dma_clean_range(start, end)
187  *
188  *              Clean (write back) the specified virtual address range.
189  *              - start  - virtual start address
190  *              - end    - virtual end address
191  *
192  *      dma_flush_range(start, end)
193  *
194  *              Clean and invalidate the specified virtual address range.
195  *              - start  - virtual start address
196  *              - end    - virtual end address
197  */
198
199 struct cpu_cache_fns {
200         void (*flush_kern_all)(void);
201         void (*flush_user_all)(void);
202         void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
203
204         void (*coherent_kern_range)(unsigned long, unsigned long);
205         void (*coherent_user_range)(unsigned long, unsigned long);
206         void (*flush_kern_dcache_page)(void *);
207
208         void (*dma_inv_range)(const void *, const void *);
209         void (*dma_clean_range)(const void *, const void *);
210         void (*dma_flush_range)(const void *, const void *);
211 };
212
213 struct outer_cache_fns {
214         void (*inv_range)(unsigned long, unsigned long);
215         void (*clean_range)(unsigned long, unsigned long);
216         void (*flush_range)(unsigned long, unsigned long);
217 };
218
219 /*
220  * Select the calling method
221  */
222 #ifdef MULTI_CACHE
223
224 extern struct cpu_cache_fns cpu_cache;
225
226 #define __cpuc_flush_kern_all           cpu_cache.flush_kern_all
227 #define __cpuc_flush_user_all           cpu_cache.flush_user_all
228 #define __cpuc_flush_user_range         cpu_cache.flush_user_range
229 #define __cpuc_coherent_kern_range      cpu_cache.coherent_kern_range
230 #define __cpuc_coherent_user_range      cpu_cache.coherent_user_range
231 #define __cpuc_flush_dcache_page        cpu_cache.flush_kern_dcache_page
232
233 /*
234  * These are private to the dma-mapping API.  Do not use directly.
235  * Their sole purpose is to ensure that data held in the cache
236  * is visible to DMA, or data written by DMA to system memory is
237  * visible to the CPU.
238  */
239 #define dmac_inv_range                  cpu_cache.dma_inv_range
240 #define dmac_clean_range                cpu_cache.dma_clean_range
241 #define dmac_flush_range                cpu_cache.dma_flush_range
242
243 #else
244
245 #define __cpuc_flush_kern_all           __glue(_CACHE,_flush_kern_cache_all)
246 #define __cpuc_flush_user_all           __glue(_CACHE,_flush_user_cache_all)
247 #define __cpuc_flush_user_range         __glue(_CACHE,_flush_user_cache_range)
248 #define __cpuc_coherent_kern_range      __glue(_CACHE,_coherent_kern_range)
249 #define __cpuc_coherent_user_range      __glue(_CACHE,_coherent_user_range)
250 #define __cpuc_flush_dcache_page        __glue(_CACHE,_flush_kern_dcache_page)
251
252 extern void __cpuc_flush_kern_all(void);
253 extern void __cpuc_flush_user_all(void);
254 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
255 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
256 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
257 extern void __cpuc_flush_dcache_page(void *);
258
259 /*
260  * These are private to the dma-mapping API.  Do not use directly.
261  * Their sole purpose is to ensure that data held in the cache
262  * is visible to DMA, or data written by DMA to system memory is
263  * visible to the CPU.
264  */
265 #define dmac_inv_range                  __glue(_CACHE,_dma_inv_range)
266 #define dmac_clean_range                __glue(_CACHE,_dma_clean_range)
267 #define dmac_flush_range                __glue(_CACHE,_dma_flush_range)
268
269 extern void dmac_inv_range(const void *, const void *);
270 extern void dmac_clean_range(const void *, const void *);
271 extern void dmac_flush_range(const void *, const void *);
272
273 #endif
274
275 #ifdef CONFIG_OUTER_CACHE
276
277 extern struct outer_cache_fns outer_cache;
278
279 static inline void outer_inv_range(unsigned long start, unsigned long end)
280 {
281         if (outer_cache.inv_range)
282                 outer_cache.inv_range(start, end);
283 }
284 static inline void outer_clean_range(unsigned long start, unsigned long end)
285 {
286         if (outer_cache.clean_range)
287                 outer_cache.clean_range(start, end);
288 }
289 static inline void outer_flush_range(unsigned long start, unsigned long end)
290 {
291         if (outer_cache.flush_range)
292                 outer_cache.flush_range(start, end);
293 }
294
295 #else
296
297 static inline void outer_inv_range(unsigned long start, unsigned long end)
298 { }
299 static inline void outer_clean_range(unsigned long start, unsigned long end)
300 { }
301 static inline void outer_flush_range(unsigned long start, unsigned long end)
302 { }
303
304 #endif
305
306 /*
307  * Copy user data from/to a page which is mapped into a different
308  * processes address space.  Really, we want to allow our "user
309  * space" model to handle this.
310  */
311 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
312         do {                                                    \
313                 memcpy(dst, src, len);                          \
314                 flush_ptrace_access(vma, page, vaddr, dst, len, 1);\
315         } while (0)
316
317 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
318         do {                                                    \
319                 memcpy(dst, src, len);                          \
320         } while (0)
321
322 /*
323  * Convert calls to our calling convention.
324  */
325 #define flush_cache_all()               __cpuc_flush_kern_all()
326 #ifndef CONFIG_CPU_CACHE_VIPT
327 static inline void flush_cache_mm(struct mm_struct *mm)
328 {
329         if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
330                 __cpuc_flush_user_all();
331 }
332
333 static inline void
334 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
335 {
336         if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
337                 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
338                                         vma->vm_flags);
339 }
340
341 static inline void
342 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
343 {
344         if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
345                 unsigned long addr = user_addr & PAGE_MASK;
346                 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
347         }
348 }
349
350 static inline void
351 flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
352                          unsigned long uaddr, void *kaddr,
353                          unsigned long len, int write)
354 {
355         if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
356                 unsigned long addr = (unsigned long)kaddr;
357                 __cpuc_coherent_kern_range(addr, addr + len);
358         }
359 }
360 #else
361 extern void flush_cache_mm(struct mm_struct *mm);
362 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
363 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
364 extern void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
365                                 unsigned long uaddr, void *kaddr,
366                                 unsigned long len, int write);
367 #endif
368
369 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
370
371 /*
372  * flush_cache_user_range is used when we want to ensure that the
373  * Harvard caches are synchronised for the user space address range.
374  * This is used for the ARM private sys_cacheflush system call.
375  */
376 #define flush_cache_user_range(vma,start,end) \
377         __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
378
379 /*
380  * Perform necessary cache operations to ensure that data previously
381  * stored within this range of addresses can be executed by the CPU.
382  */
383 #define flush_icache_range(s,e)         __cpuc_coherent_kern_range(s,e)
384
385 /*
386  * Perform necessary cache operations to ensure that the TLB will
387  * see data written in the specified area.
388  */
389 #define clean_dcache_area(start,size)   cpu_dcache_clean_area(start, size)
390
391 /*
392  * flush_dcache_page is used when the kernel has written to the page
393  * cache page at virtual address page->virtual.
394  *
395  * If this page isn't mapped (ie, page_mapping == NULL), or it might
396  * have userspace mappings, then we _must_ always clean + invalidate
397  * the dcache entries associated with the kernel mapping.
398  *
399  * Otherwise we can defer the operation, and clean the cache when we are
400  * about to change to user space.  This is the same method as used on SPARC64.
401  * See update_mmu_cache for the user space part.
402  */
403 extern void flush_dcache_page(struct page *);
404
405 extern void __flush_dcache_page(struct address_space *mapping, struct page *page);
406
407 static inline void __flush_icache_all(void)
408 {
409         asm("mcr        p15, 0, %0, c7, c5, 0   @ invalidate I-cache\n"
410             :
411             : "r" (0));
412 }
413
414 #define ARCH_HAS_FLUSH_ANON_PAGE
415 static inline void flush_anon_page(struct vm_area_struct *vma,
416                          struct page *page, unsigned long vmaddr)
417 {
418         extern void __flush_anon_page(struct vm_area_struct *vma,
419                                 struct page *, unsigned long);
420         if (PageAnon(page))
421                 __flush_anon_page(vma, page, vmaddr);
422 }
423
424 #define flush_dcache_mmap_lock(mapping) \
425         spin_lock_irq(&(mapping)->tree_lock)
426 #define flush_dcache_mmap_unlock(mapping) \
427         spin_unlock_irq(&(mapping)->tree_lock)
428
429 #define flush_icache_user_range(vma,page,addr,len) \
430         flush_dcache_page(page)
431
432 /*
433  * We don't appear to need to do anything here.  In fact, if we did, we'd
434  * duplicate cache flushing elsewhere performed by flush_dcache_page().
435  */
436 #define flush_icache_page(vma,page)     do { } while (0)
437
438 static inline void flush_ioremap_region(unsigned long phys, void __iomem *virt,
439         unsigned offset, size_t size)
440 {
441         const void *start = (void __force *)virt + offset;
442         dmac_inv_range(start, start + size);
443 }
444
445 /*
446  * flush_cache_vmap() is used when creating mappings (eg, via vmap,
447  * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
448  * caches, since the direct-mappings of these pages may contain cached
449  * data, we need to do a full cache flush to ensure that writebacks
450  * don't corrupt data placed into these pages via the new mappings.
451  */
452 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
453 {
454         if (!cache_is_vipt_nonaliasing())
455                 flush_cache_all();
456         else
457                 /*
458                  * set_pte_at() called from vmap_pte_range() does not
459                  * have a DSB after cleaning the cache line.
460                  */
461                 dsb();
462 }
463
464 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
465 {
466         if (!cache_is_vipt_nonaliasing())
467                 flush_cache_all();
468 }
469
470 #endif