]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/common/dmabounce.c
[ARM] dma: fix dmabounce dma_sync_xxx() implementations
[linux-2.6-omap-h63xx.git] / arch / arm / common / dmabounce.c
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM, the remainder of memory is at the top and the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontiguous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32 #include <linux/scatterlist.h>
33
34 #include <asm/cacheflush.h>
35
36 #undef STATS
37
38 #ifdef STATS
39 #define DO_STATS(X) do { X ; } while (0)
40 #else
41 #define DO_STATS(X) do { } while (0)
42 #endif
43
44 /* ************************************************** */
45
46 struct safe_buffer {
47         struct list_head node;
48
49         /* original request */
50         void            *ptr;
51         size_t          size;
52         int             direction;
53
54         /* safe buffer info */
55         struct dmabounce_pool *pool;
56         void            *safe;
57         dma_addr_t      safe_dma_addr;
58 };
59
60 struct dmabounce_pool {
61         unsigned long   size;
62         struct dma_pool *pool;
63 #ifdef STATS
64         unsigned long   allocs;
65 #endif
66 };
67
68 struct dmabounce_device_info {
69         struct device *dev;
70         struct list_head safe_buffers;
71 #ifdef STATS
72         unsigned long total_allocs;
73         unsigned long map_op_count;
74         unsigned long bounce_count;
75         int attr_res;
76 #endif
77         struct dmabounce_pool   small;
78         struct dmabounce_pool   large;
79
80         rwlock_t lock;
81 };
82
83 #ifdef STATS
84 static ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr,
85                               char *buf)
86 {
87         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
88         return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n",
89                 device_info->small.allocs,
90                 device_info->large.allocs,
91                 device_info->total_allocs - device_info->small.allocs -
92                         device_info->large.allocs,
93                 device_info->total_allocs,
94                 device_info->map_op_count,
95                 device_info->bounce_count);
96 }
97
98 static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL);
99 #endif
100
101
102 /* allocate a 'safe' buffer and keep track of it */
103 static inline struct safe_buffer *
104 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
105                   size_t size, enum dma_data_direction dir)
106 {
107         struct safe_buffer *buf;
108         struct dmabounce_pool *pool;
109         struct device *dev = device_info->dev;
110         unsigned long flags;
111
112         dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
113                 __func__, ptr, size, dir);
114
115         if (size <= device_info->small.size) {
116                 pool = &device_info->small;
117         } else if (size <= device_info->large.size) {
118                 pool = &device_info->large;
119         } else {
120                 pool = NULL;
121         }
122
123         buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
124         if (buf == NULL) {
125                 dev_warn(dev, "%s: kmalloc failed\n", __func__);
126                 return NULL;
127         }
128
129         buf->ptr = ptr;
130         buf->size = size;
131         buf->direction = dir;
132         buf->pool = pool;
133
134         if (pool) {
135                 buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
136                                            &buf->safe_dma_addr);
137         } else {
138                 buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
139                                                GFP_ATOMIC);
140         }
141
142         if (buf->safe == NULL) {
143                 dev_warn(dev,
144                          "%s: could not alloc dma memory (size=%d)\n",
145                          __func__, size);
146                 kfree(buf);
147                 return NULL;
148         }
149
150 #ifdef STATS
151         if (pool)
152                 pool->allocs++;
153         device_info->total_allocs++;
154 #endif
155
156         write_lock_irqsave(&device_info->lock, flags);
157
158         list_add(&buf->node, &device_info->safe_buffers);
159
160         write_unlock_irqrestore(&device_info->lock, flags);
161
162         return buf;
163 }
164
165 /* determine if a buffer is from our "safe" pool */
166 static inline struct safe_buffer *
167 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
168 {
169         struct safe_buffer *b, *rb = NULL;
170         unsigned long flags;
171
172         read_lock_irqsave(&device_info->lock, flags);
173
174         list_for_each_entry(b, &device_info->safe_buffers, node)
175                 if (b->safe_dma_addr == safe_dma_addr) {
176                         rb = b;
177                         break;
178                 }
179
180         read_unlock_irqrestore(&device_info->lock, flags);
181         return rb;
182 }
183
184 static inline void
185 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
186 {
187         unsigned long flags;
188
189         dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
190
191         write_lock_irqsave(&device_info->lock, flags);
192
193         list_del(&buf->node);
194
195         write_unlock_irqrestore(&device_info->lock, flags);
196
197         if (buf->pool)
198                 dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
199         else
200                 dma_free_coherent(device_info->dev, buf->size, buf->safe,
201                                     buf->safe_dma_addr);
202
203         kfree(buf);
204 }
205
206 /* ************************************************** */
207
208 static struct safe_buffer *find_safe_buffer_dev(struct device *dev,
209                 dma_addr_t dma_addr, const char *where)
210 {
211         if (!dev || !dev->archdata.dmabounce)
212                 return NULL;
213         if (dma_mapping_error(dev, dma_addr)) {
214                 if (dev)
215                         dev_err(dev, "Trying to %s invalid mapping\n", where);
216                 else
217                         pr_err("unknown device: Trying to %s invalid mapping\n", where);
218                 return NULL;
219         }
220         return find_safe_buffer(dev->archdata.dmabounce, dma_addr);
221 }
222
223 static inline dma_addr_t
224 map_single(struct device *dev, void *ptr, size_t size,
225                 enum dma_data_direction dir)
226 {
227         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
228         dma_addr_t dma_addr;
229         int needs_bounce = 0;
230
231         if (device_info)
232                 DO_STATS ( device_info->map_op_count++ );
233
234         dma_addr = virt_to_dma(dev, ptr);
235
236         if (dev->dma_mask) {
237                 unsigned long mask = *dev->dma_mask;
238                 unsigned long limit;
239
240                 limit = (mask + 1) & ~mask;
241                 if (limit && size > limit) {
242                         dev_err(dev, "DMA mapping too big (requested %#x "
243                                 "mask %#Lx)\n", size, *dev->dma_mask);
244                         return ~0;
245                 }
246
247                 /*
248                  * Figure out if we need to bounce from the DMA mask.
249                  */
250                 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
251         }
252
253         if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
254                 struct safe_buffer *buf;
255
256                 buf = alloc_safe_buffer(device_info, ptr, size, dir);
257                 if (buf == 0) {
258                         dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
259                                __func__, ptr);
260                         return 0;
261                 }
262
263                 dev_dbg(dev,
264                         "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
265                         __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
266                         buf->safe, buf->safe_dma_addr);
267
268                 if ((dir == DMA_TO_DEVICE) ||
269                     (dir == DMA_BIDIRECTIONAL)) {
270                         dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
271                                 __func__, ptr, buf->safe, size);
272                         memcpy(buf->safe, ptr, size);
273                 }
274                 ptr = buf->safe;
275
276                 dma_addr = buf->safe_dma_addr;
277         } else {
278                 /*
279                  * We don't need to sync the DMA buffer since
280                  * it was allocated via the coherent allocators.
281                  */
282                 dma_cache_maint(ptr, size, dir);
283         }
284
285         return dma_addr;
286 }
287
288 static inline void
289 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
290                 enum dma_data_direction dir)
291 {
292         struct safe_buffer *buf = find_safe_buffer_dev(dev, dma_addr, "unmap");
293
294         if (buf) {
295                 BUG_ON(buf->size != size);
296
297                 dev_dbg(dev,
298                         "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
299                         __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
300                         buf->safe, buf->safe_dma_addr);
301
302                 DO_STATS(dev->archdata.dmabounce->bounce_count++);
303
304                 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
305                         void *ptr = buf->ptr;
306
307                         dev_dbg(dev,
308                                 "%s: copy back safe %p to unsafe %p size %d\n",
309                                 __func__, buf->safe, ptr, size);
310                         memcpy(ptr, buf->safe, size);
311
312                         /*
313                          * DMA buffers must have the same cache properties
314                          * as if they were really used for DMA - which means
315                          * data must be written back to RAM.  Note that
316                          * we don't use dmac_flush_range() here for the
317                          * bidirectional case because we know the cache
318                          * lines will be coherent with the data written.
319                          */
320                         dmac_clean_range(ptr, ptr + size);
321                         outer_clean_range(__pa(ptr), __pa(ptr) + size);
322                 }
323                 free_safe_buffer(dev->archdata.dmabounce, buf);
324         }
325 }
326
327 /* ************************************************** */
328
329 /*
330  * see if a buffer address is in an 'unsafe' range.  if it is
331  * allocate a 'safe' buffer and copy the unsafe buffer into it.
332  * substitute the safe buffer for the unsafe one.
333  * (basically move the buffer from an unsafe area to a safe one)
334  */
335 dma_addr_t
336 dma_map_single(struct device *dev, void *ptr, size_t size,
337                 enum dma_data_direction dir)
338 {
339         dma_addr_t dma_addr;
340
341         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
342                 __func__, ptr, size, dir);
343
344         BUG_ON(dir == DMA_NONE);
345
346         dma_addr = map_single(dev, ptr, size, dir);
347
348         return dma_addr;
349 }
350
351 dma_addr_t dma_map_page(struct device *dev, struct page *page,
352                         unsigned long offset, size_t size,
353                         enum dma_data_direction dir)
354 {
355         dev_dbg(dev, "%s(page=%p,off=%#lx,size=%zx,dir=%x)\n",
356                 __func__, page, offset, size, dir);
357
358         BUG_ON(dir == DMA_NONE);
359
360         return map_single(dev, page_address(page) + offset, size, dir);
361 }
362 EXPORT_SYMBOL(dma_map_page);
363
364 /*
365  * see if a mapped address was really a "safe" buffer and if so, copy
366  * the data from the safe buffer back to the unsafe buffer and free up
367  * the safe buffer.  (basically return things back to the way they
368  * should be)
369  */
370
371 void
372 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
373                         enum dma_data_direction dir)
374 {
375         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
376                 __func__, (void *) dma_addr, size, dir);
377
378         BUG_ON(dir == DMA_NONE);
379
380         unmap_single(dev, dma_addr, size, dir);
381 }
382
383 int dmabounce_sync_for_cpu(struct device *dev, dma_addr_t addr,
384                 unsigned long off, size_t sz, enum dma_data_direction dir)
385 {
386         struct safe_buffer *buf;
387
388         dev_dbg(dev, "%s(dma=%#x,off=%#lx,sz=%zx,dir=%x)\n",
389                 __func__, addr, off, sz, dir);
390
391         buf = find_safe_buffer_dev(dev, addr, __func__);
392         if (!buf)
393                 return 1;
394
395         dev_dbg(dev, "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
396                 __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
397                 buf->safe, buf->safe_dma_addr);
398
399         DO_STATS(dev->archdata.dmabounce->bounce_count++);
400
401         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
402                 dev_dbg(dev, "%s: copy back safe %p to unsafe %p size %d\n",
403                         __func__, buf->safe + off, buf->ptr + off, sz);
404                 memcpy(buf->ptr + off, buf->safe + off, sz);
405         }
406         return 0;
407 }
408 EXPORT_SYMBOL(dmabounce_sync_for_cpu);
409
410 int dmabounce_sync_for_device(struct device *dev, dma_addr_t addr,
411                 unsigned long off, size_t sz, enum dma_data_direction dir)
412 {
413         struct safe_buffer *buf;
414
415         dev_dbg(dev, "%s(dma=%#x,off=%#lx,sz=%zx,dir=%x)\n",
416                 __func__, addr, off, sz, dir);
417
418         buf = find_safe_buffer_dev(dev, addr, __func__);
419         if (!buf)
420                 return 1;
421
422         dev_dbg(dev, "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
423                 __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
424                 buf->safe, buf->safe_dma_addr);
425
426         DO_STATS(dev->archdata.dmabounce->bounce_count++);
427
428         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) {
429                 dev_dbg(dev, "%s: copy out unsafe %p to safe %p, size %d\n",
430                         __func__,buf->ptr + off, buf->safe + off, sz);
431                 memcpy(buf->safe + off, buf->ptr + off, sz);
432         }
433         return 0;
434 }
435 EXPORT_SYMBOL(dmabounce_sync_for_device);
436
437 static int
438 dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
439                     unsigned long size)
440 {
441         pool->size = size;
442         DO_STATS(pool->allocs = 0);
443         pool->pool = dma_pool_create(name, dev, size,
444                                      0 /* byte alignment */,
445                                      0 /* no page-crossing issues */);
446
447         return pool->pool ? 0 : -ENOMEM;
448 }
449
450 int
451 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
452                         unsigned long large_buffer_size)
453 {
454         struct dmabounce_device_info *device_info;
455         int ret;
456
457         device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
458         if (!device_info) {
459                 dev_err(dev,
460                         "Could not allocated dmabounce_device_info\n");
461                 return -ENOMEM;
462         }
463
464         ret = dmabounce_init_pool(&device_info->small, dev,
465                                   "small_dmabounce_pool", small_buffer_size);
466         if (ret) {
467                 dev_err(dev,
468                         "dmabounce: could not allocate DMA pool for %ld byte objects\n",
469                         small_buffer_size);
470                 goto err_free;
471         }
472
473         if (large_buffer_size) {
474                 ret = dmabounce_init_pool(&device_info->large, dev,
475                                           "large_dmabounce_pool",
476                                           large_buffer_size);
477                 if (ret) {
478                         dev_err(dev,
479                                 "dmabounce: could not allocate DMA pool for %ld byte objects\n",
480                                 large_buffer_size);
481                         goto err_destroy;
482                 }
483         }
484
485         device_info->dev = dev;
486         INIT_LIST_HEAD(&device_info->safe_buffers);
487         rwlock_init(&device_info->lock);
488
489 #ifdef STATS
490         device_info->total_allocs = 0;
491         device_info->map_op_count = 0;
492         device_info->bounce_count = 0;
493         device_info->attr_res = device_create_file(dev, &dev_attr_dmabounce_stats);
494 #endif
495
496         dev->archdata.dmabounce = device_info;
497
498         dev_info(dev, "dmabounce: registered device\n");
499
500         return 0;
501
502  err_destroy:
503         dma_pool_destroy(device_info->small.pool);
504  err_free:
505         kfree(device_info);
506         return ret;
507 }
508
509 void
510 dmabounce_unregister_dev(struct device *dev)
511 {
512         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
513
514         dev->archdata.dmabounce = NULL;
515
516         if (!device_info) {
517                 dev_warn(dev,
518                          "Never registered with dmabounce but attempting"
519                          "to unregister!\n");
520                 return;
521         }
522
523         if (!list_empty(&device_info->safe_buffers)) {
524                 dev_err(dev,
525                         "Removing from dmabounce with pending buffers!\n");
526                 BUG();
527         }
528
529         if (device_info->small.pool)
530                 dma_pool_destroy(device_info->small.pool);
531         if (device_info->large.pool)
532                 dma_pool_destroy(device_info->large.pool);
533
534 #ifdef STATS
535         if (device_info->attr_res == 0)
536                 device_remove_file(dev, &dev_attr_dmabounce_stats);
537 #endif
538
539         kfree(device_info);
540
541         dev_info(dev, "dmabounce: device unregistered\n");
542 }
543
544
545 EXPORT_SYMBOL(dma_map_single);
546 EXPORT_SYMBOL(dma_unmap_single);
547 EXPORT_SYMBOL(dmabounce_register_dev);
548 EXPORT_SYMBOL(dmabounce_unregister_dev);
549
550 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
551 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
552 MODULE_LICENSE("GPL");