]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - arch/arm/common/dmabounce.c
c7f23ced0a360c4ceee2dba7c0261d3161d72765
[linux-2.6-omap-h63xx.git] / arch / arm / common / dmabounce.c
1 /*
2  *  arch/arm/common/dmabounce.c
3  *
4  *  Special dma_{map/unmap/dma_sync}_* routines for systems that have
5  *  limited DMA windows. These functions utilize bounce buffers to
6  *  copy data to/from buffers located outside the DMA region. This
7  *  only works for systems in which DMA memory is at the bottom of
8  *  RAM, the remainder of memory is at the top and the DMA memory
9  *  can be marked as ZONE_DMA. Anything beyond that such as discontiguous
10  *  DMA windows will require custom implementations that reserve memory
11  *  areas at early bootup.
12  *
13  *  Original version by Brad Parker (brad@heeltoe.com)
14  *  Re-written by Christopher Hoover <ch@murgatroid.com>
15  *  Made generic by Deepak Saxena <dsaxena@plexity.net>
16  *
17  *  Copyright (C) 2002 Hewlett Packard Company.
18  *  Copyright (C) 2004 MontaVista Software, Inc.
19  *
20  *  This program is free software; you can redistribute it and/or
21  *  modify it under the terms of the GNU General Public License
22  *  version 2 as published by the Free Software Foundation.
23  */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/list.h>
32 #include <linux/scatterlist.h>
33
34 #include <asm/cacheflush.h>
35
36 #undef STATS
37
38 #ifdef STATS
39 #define DO_STATS(X) do { X ; } while (0)
40 #else
41 #define DO_STATS(X) do { } while (0)
42 #endif
43
44 /* ************************************************** */
45
46 struct safe_buffer {
47         struct list_head node;
48
49         /* original request */
50         void            *ptr;
51         size_t          size;
52         int             direction;
53
54         /* safe buffer info */
55         struct dmabounce_pool *pool;
56         void            *safe;
57         dma_addr_t      safe_dma_addr;
58 };
59
60 struct dmabounce_pool {
61         unsigned long   size;
62         struct dma_pool *pool;
63 #ifdef STATS
64         unsigned long   allocs;
65 #endif
66 };
67
68 struct dmabounce_device_info {
69         struct device *dev;
70         struct list_head safe_buffers;
71 #ifdef STATS
72         unsigned long total_allocs;
73         unsigned long map_op_count;
74         unsigned long bounce_count;
75         int attr_res;
76 #endif
77         struct dmabounce_pool   small;
78         struct dmabounce_pool   large;
79
80         rwlock_t lock;
81 };
82
83 #ifdef STATS
84 static ssize_t dmabounce_show(struct device *dev, struct device_attribute *attr,
85                               char *buf)
86 {
87         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
88         return sprintf(buf, "%lu %lu %lu %lu %lu %lu\n",
89                 device_info->small.allocs,
90                 device_info->large.allocs,
91                 device_info->total_allocs - device_info->small.allocs -
92                         device_info->large.allocs,
93                 device_info->total_allocs,
94                 device_info->map_op_count,
95                 device_info->bounce_count);
96 }
97
98 static DEVICE_ATTR(dmabounce_stats, 0400, dmabounce_show, NULL);
99 #endif
100
101
102 /* allocate a 'safe' buffer and keep track of it */
103 static inline struct safe_buffer *
104 alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
105                   size_t size, enum dma_data_direction dir)
106 {
107         struct safe_buffer *buf;
108         struct dmabounce_pool *pool;
109         struct device *dev = device_info->dev;
110         unsigned long flags;
111
112         dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
113                 __func__, ptr, size, dir);
114
115         if (size <= device_info->small.size) {
116                 pool = &device_info->small;
117         } else if (size <= device_info->large.size) {
118                 pool = &device_info->large;
119         } else {
120                 pool = NULL;
121         }
122
123         buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
124         if (buf == NULL) {
125                 dev_warn(dev, "%s: kmalloc failed\n", __func__);
126                 return NULL;
127         }
128
129         buf->ptr = ptr;
130         buf->size = size;
131         buf->direction = dir;
132         buf->pool = pool;
133
134         if (pool) {
135                 buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
136                                            &buf->safe_dma_addr);
137         } else {
138                 buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
139                                                GFP_ATOMIC);
140         }
141
142         if (buf->safe == NULL) {
143                 dev_warn(dev,
144                          "%s: could not alloc dma memory (size=%d)\n",
145                          __func__, size);
146                 kfree(buf);
147                 return NULL;
148         }
149
150 #ifdef STATS
151         if (pool)
152                 pool->allocs++;
153         device_info->total_allocs++;
154 #endif
155
156         write_lock_irqsave(&device_info->lock, flags);
157
158         list_add(&buf->node, &device_info->safe_buffers);
159
160         write_unlock_irqrestore(&device_info->lock, flags);
161
162         return buf;
163 }
164
165 /* determine if a buffer is from our "safe" pool */
166 static inline struct safe_buffer *
167 find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
168 {
169         struct safe_buffer *b, *rb = NULL;
170         unsigned long flags;
171
172         read_lock_irqsave(&device_info->lock, flags);
173
174         list_for_each_entry(b, &device_info->safe_buffers, node)
175                 if (b->safe_dma_addr == safe_dma_addr) {
176                         rb = b;
177                         break;
178                 }
179
180         read_unlock_irqrestore(&device_info->lock, flags);
181         return rb;
182 }
183
184 static inline void
185 free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
186 {
187         unsigned long flags;
188
189         dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
190
191         write_lock_irqsave(&device_info->lock, flags);
192
193         list_del(&buf->node);
194
195         write_unlock_irqrestore(&device_info->lock, flags);
196
197         if (buf->pool)
198                 dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
199         else
200                 dma_free_coherent(device_info->dev, buf->size, buf->safe,
201                                     buf->safe_dma_addr);
202
203         kfree(buf);
204 }
205
206 /* ************************************************** */
207
208 static inline dma_addr_t
209 map_single(struct device *dev, void *ptr, size_t size,
210                 enum dma_data_direction dir)
211 {
212         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
213         dma_addr_t dma_addr;
214         int needs_bounce = 0;
215
216         if (device_info)
217                 DO_STATS ( device_info->map_op_count++ );
218
219         dma_addr = virt_to_dma(dev, ptr);
220
221         if (dev->dma_mask) {
222                 unsigned long mask = *dev->dma_mask;
223                 unsigned long limit;
224
225                 limit = (mask + 1) & ~mask;
226                 if (limit && size > limit) {
227                         dev_err(dev, "DMA mapping too big (requested %#x "
228                                 "mask %#Lx)\n", size, *dev->dma_mask);
229                         return ~0;
230                 }
231
232                 /*
233                  * Figure out if we need to bounce from the DMA mask.
234                  */
235                 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
236         }
237
238         if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
239                 struct safe_buffer *buf;
240
241                 buf = alloc_safe_buffer(device_info, ptr, size, dir);
242                 if (buf == 0) {
243                         dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
244                                __func__, ptr);
245                         return 0;
246                 }
247
248                 dev_dbg(dev,
249                         "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
250                         __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
251                         buf->safe, buf->safe_dma_addr);
252
253                 if ((dir == DMA_TO_DEVICE) ||
254                     (dir == DMA_BIDIRECTIONAL)) {
255                         dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
256                                 __func__, ptr, buf->safe, size);
257                         memcpy(buf->safe, ptr, size);
258                 }
259                 ptr = buf->safe;
260
261                 dma_addr = buf->safe_dma_addr;
262         } else {
263                 /*
264                  * We don't need to sync the DMA buffer since
265                  * it was allocated via the coherent allocators.
266                  */
267                 dma_cache_maint(ptr, size, dir);
268         }
269
270         return dma_addr;
271 }
272
273 static inline void
274 unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
275                 enum dma_data_direction dir)
276 {
277         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
278         struct safe_buffer *buf = NULL;
279
280         /*
281          * Trying to unmap an invalid mapping
282          */
283         if (dma_mapping_error(dev, dma_addr)) {
284                 dev_err(dev, "Trying to unmap invalid mapping\n");
285                 return;
286         }
287
288         if (device_info)
289                 buf = find_safe_buffer(device_info, dma_addr);
290
291         if (buf) {
292                 BUG_ON(buf->size != size);
293
294                 dev_dbg(dev,
295                         "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
296                         __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
297                         buf->safe, buf->safe_dma_addr);
298
299                 DO_STATS ( device_info->bounce_count++ );
300
301                 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
302                         void *ptr = buf->ptr;
303
304                         dev_dbg(dev,
305                                 "%s: copy back safe %p to unsafe %p size %d\n",
306                                 __func__, buf->safe, ptr, size);
307                         memcpy(ptr, buf->safe, size);
308
309                         /*
310                          * DMA buffers must have the same cache properties
311                          * as if they were really used for DMA - which means
312                          * data must be written back to RAM.  Note that
313                          * we don't use dmac_flush_range() here for the
314                          * bidirectional case because we know the cache
315                          * lines will be coherent with the data written.
316                          */
317                         dmac_clean_range(ptr, ptr + size);
318                         outer_clean_range(__pa(ptr), __pa(ptr) + size);
319                 }
320                 free_safe_buffer(device_info, buf);
321         }
322 }
323
324 static int sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
325                         enum dma_data_direction dir)
326 {
327         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
328         struct safe_buffer *buf = NULL;
329
330         if (device_info)
331                 buf = find_safe_buffer(device_info, dma_addr);
332
333         if (buf) {
334                 /*
335                  * Both of these checks from original code need to be
336                  * commented out b/c some drivers rely on the following:
337                  *
338                  * 1) Drivers may map a large chunk of memory into DMA space
339                  *    but only sync a small portion of it. Good example is
340                  *    allocating a large buffer, mapping it, and then
341                  *    breaking it up into small descriptors. No point
342                  *    in syncing the whole buffer if you only have to
343                  *    touch one descriptor.
344                  *
345                  * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
346                  *    usually only synced in one dir at a time.
347                  *
348                  * See drivers/net/eepro100.c for examples of both cases.
349                  *
350                  * -ds
351                  *
352                  * BUG_ON(buf->size != size);
353                  * BUG_ON(buf->direction != dir);
354                  */
355
356                 dev_dbg(dev,
357                         "%s: unsafe buffer %p (dma=%#x) mapped to %p (dma=%#x)\n",
358                         __func__, buf->ptr, virt_to_dma(dev, buf->ptr),
359                         buf->safe, buf->safe_dma_addr);
360
361                 DO_STATS ( device_info->bounce_count++ );
362
363                 switch (dir) {
364                 case DMA_FROM_DEVICE:
365                         dev_dbg(dev,
366                                 "%s: copy back safe %p to unsafe %p size %d\n",
367                                 __func__, buf->safe, buf->ptr, size);
368                         memcpy(buf->ptr, buf->safe, size);
369                         break;
370                 case DMA_TO_DEVICE:
371                         dev_dbg(dev,
372                                 "%s: copy out unsafe %p to safe %p, size %d\n",
373                                 __func__,buf->ptr, buf->safe, size);
374                         memcpy(buf->safe, buf->ptr, size);
375                         break;
376                 case DMA_BIDIRECTIONAL:
377                         BUG();  /* is this allowed?  what does it mean? */
378                 default:
379                         BUG();
380                 }
381                 /*
382                  * No need to sync the safe buffer - it was allocated
383                  * via the coherent allocators.
384                  */
385                 return 0;
386         } else {
387                 return 1;
388         }
389 }
390
391 /* ************************************************** */
392
393 /*
394  * see if a buffer address is in an 'unsafe' range.  if it is
395  * allocate a 'safe' buffer and copy the unsafe buffer into it.
396  * substitute the safe buffer for the unsafe one.
397  * (basically move the buffer from an unsafe area to a safe one)
398  */
399 dma_addr_t
400 dma_map_single(struct device *dev, void *ptr, size_t size,
401                 enum dma_data_direction dir)
402 {
403         dma_addr_t dma_addr;
404
405         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
406                 __func__, ptr, size, dir);
407
408         BUG_ON(dir == DMA_NONE);
409
410         dma_addr = map_single(dev, ptr, size, dir);
411
412         return dma_addr;
413 }
414
415 dma_addr_t dma_map_page(struct device *dev, struct page *page,
416                         unsigned long offset, size_t size,
417                         enum dma_data_direction dir)
418 {
419         dev_dbg(dev, "%s(page=%p,off=%#lx,size=%zx,dir=%x)\n",
420                 __func__, page, offset, size, dir);
421
422         BUG_ON(dir == DMA_NONE);
423
424         return map_single(dev, page_address(page) + offset, size, dir);
425 }
426 EXPORT_SYMBOL(dma_map_page);
427
428 /*
429  * see if a mapped address was really a "safe" buffer and if so, copy
430  * the data from the safe buffer back to the unsafe buffer and free up
431  * the safe buffer.  (basically return things back to the way they
432  * should be)
433  */
434
435 void
436 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
437                         enum dma_data_direction dir)
438 {
439         dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
440                 __func__, (void *) dma_addr, size, dir);
441
442         BUG_ON(dir == DMA_NONE);
443
444         unmap_single(dev, dma_addr, size, dir);
445 }
446
447 int
448 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
449                 enum dma_data_direction dir)
450 {
451         struct scatterlist *s;
452         int i;
453
454         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
455                 __func__, sg, nents, dir);
456
457         BUG_ON(dir == DMA_NONE);
458
459         for_each_sg(sg, s, nents, i) {
460                 struct page *page = sg_page(s);
461                 unsigned int offset = s->offset;
462                 unsigned int length = s->length;
463                 void *ptr = page_address(page) + offset;
464
465                 s->dma_address = map_single(dev, ptr, length, dir);
466         }
467
468         return nents;
469 }
470
471 void
472 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
473                 enum dma_data_direction dir)
474 {
475         struct scatterlist *s;
476         int i;
477
478         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
479                 __func__, sg, nents, dir);
480
481         BUG_ON(dir == DMA_NONE);
482
483         for_each_sg(sg, s, nents, i) {
484                 dma_addr_t dma_addr = s->dma_address;
485                 unsigned int length = s->length;
486
487                 unmap_single(dev, dma_addr, length, dir);
488         }
489 }
490
491 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_addr,
492                                    unsigned long offset, size_t size,
493                                    enum dma_data_direction dir)
494 {
495         dev_dbg(dev, "%s(dma=%#x,off=%#lx,size=%zx,dir=%x)\n",
496                 __func__, dma_addr, offset, size, dir);
497
498         if (sync_single(dev, dma_addr, offset + size, dir))
499                 dma_cache_maint(dma_to_virt(dev, dma_addr) + offset, size, dir);
500 }
501 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
502
503 void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_addr,
504                                       unsigned long offset, size_t size,
505                                       enum dma_data_direction dir)
506 {
507         dev_dbg(dev, "%s(dma=%#x,off=%#lx,size=%zx,dir=%x)\n",
508                 __func__, dma_addr, offset, size, dir);
509
510         if (sync_single(dev, dma_addr, offset + size, dir))
511                 dma_cache_maint(dma_to_virt(dev, dma_addr) + offset, size, dir);
512 }
513 EXPORT_SYMBOL(dma_sync_single_range_for_device);
514
515 void
516 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
517                         enum dma_data_direction dir)
518 {
519         struct scatterlist *s;
520         int i;
521
522         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
523                 __func__, sg, nents, dir);
524
525         BUG_ON(dir == DMA_NONE);
526
527         for_each_sg(sg, s, nents, i) {
528                 dma_addr_t dma_addr = s->dma_address;
529                 unsigned int length = s->length;
530
531                 sync_single(dev, dma_addr, length, dir);
532         }
533 }
534
535 void
536 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
537                         enum dma_data_direction dir)
538 {
539         struct scatterlist *s;
540         int i;
541
542         dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
543                 __func__, sg, nents, dir);
544
545         BUG_ON(dir == DMA_NONE);
546
547         for_each_sg(sg, s, nents, i) {
548                 dma_addr_t dma_addr = s->dma_address;
549                 unsigned int length = s->length;
550
551                 sync_single(dev, dma_addr, length, dir);
552         }
553 }
554
555 static int
556 dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
557                     unsigned long size)
558 {
559         pool->size = size;
560         DO_STATS(pool->allocs = 0);
561         pool->pool = dma_pool_create(name, dev, size,
562                                      0 /* byte alignment */,
563                                      0 /* no page-crossing issues */);
564
565         return pool->pool ? 0 : -ENOMEM;
566 }
567
568 int
569 dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
570                         unsigned long large_buffer_size)
571 {
572         struct dmabounce_device_info *device_info;
573         int ret;
574
575         device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
576         if (!device_info) {
577                 dev_err(dev,
578                         "Could not allocated dmabounce_device_info\n");
579                 return -ENOMEM;
580         }
581
582         ret = dmabounce_init_pool(&device_info->small, dev,
583                                   "small_dmabounce_pool", small_buffer_size);
584         if (ret) {
585                 dev_err(dev,
586                         "dmabounce: could not allocate DMA pool for %ld byte objects\n",
587                         small_buffer_size);
588                 goto err_free;
589         }
590
591         if (large_buffer_size) {
592                 ret = dmabounce_init_pool(&device_info->large, dev,
593                                           "large_dmabounce_pool",
594                                           large_buffer_size);
595                 if (ret) {
596                         dev_err(dev,
597                                 "dmabounce: could not allocate DMA pool for %ld byte objects\n",
598                                 large_buffer_size);
599                         goto err_destroy;
600                 }
601         }
602
603         device_info->dev = dev;
604         INIT_LIST_HEAD(&device_info->safe_buffers);
605         rwlock_init(&device_info->lock);
606
607 #ifdef STATS
608         device_info->total_allocs = 0;
609         device_info->map_op_count = 0;
610         device_info->bounce_count = 0;
611         device_info->attr_res = device_create_file(dev, &dev_attr_dmabounce_stats);
612 #endif
613
614         dev->archdata.dmabounce = device_info;
615
616         dev_info(dev, "dmabounce: registered device\n");
617
618         return 0;
619
620  err_destroy:
621         dma_pool_destroy(device_info->small.pool);
622  err_free:
623         kfree(device_info);
624         return ret;
625 }
626
627 void
628 dmabounce_unregister_dev(struct device *dev)
629 {
630         struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
631
632         dev->archdata.dmabounce = NULL;
633
634         if (!device_info) {
635                 dev_warn(dev,
636                          "Never registered with dmabounce but attempting"
637                          "to unregister!\n");
638                 return;
639         }
640
641         if (!list_empty(&device_info->safe_buffers)) {
642                 dev_err(dev,
643                         "Removing from dmabounce with pending buffers!\n");
644                 BUG();
645         }
646
647         if (device_info->small.pool)
648                 dma_pool_destroy(device_info->small.pool);
649         if (device_info->large.pool)
650                 dma_pool_destroy(device_info->large.pool);
651
652 #ifdef STATS
653         if (device_info->attr_res == 0)
654                 device_remove_file(dev, &dev_attr_dmabounce_stats);
655 #endif
656
657         kfree(device_info);
658
659         dev_info(dev, "dmabounce: device unregistered\n");
660 }
661
662
663 EXPORT_SYMBOL(dma_map_single);
664 EXPORT_SYMBOL(dma_unmap_single);
665 EXPORT_SYMBOL(dma_map_sg);
666 EXPORT_SYMBOL(dma_unmap_sg);
667 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
668 EXPORT_SYMBOL(dma_sync_sg_for_device);
669 EXPORT_SYMBOL(dmabounce_register_dev);
670 EXPORT_SYMBOL(dmabounce_unregister_dev);
671
672 MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
673 MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
674 MODULE_LICENSE("GPL");